@dupammi I already marked that answered as I think your advices helps a lot. But excuse me - I suspect I can not fix it from my end in any way.
In the meantime I retrained the model and deployed again on the endpoint.
And situation repeats with one small difference, newly I am getting one more error that looks like the data got deeper into processing, but it hits another issue with '<' sign. Still this is related to the date field of the request only.
To me it seems like this will require quick fix from MS side as it seems like a bug in the response data processing for 'date'/'datetime' datatype. It is not possible to change anything in the request by at least I tried many options and found none that would be successfully processed. Date format in training data is correct and consistent %YY-%mm-%dd with what I am using in the request.
I suspect this time it doesn't have solution and it requires fix from Microsoft.
2024-03-29 10:06:03,933 E [74] azmlinfsrv - Encountered Exception: Traceback (most recent call last):
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml_inference_server_http/server/user_script.py", line 132, in invoke_run
run_output = self._wrapped_user_run(**run_parameters, request_headers=dict(request.headers))
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml_inference_server_http/server/user_script.py", line 156, in <lambda>
self._wrapped_user_run = lambda request_headers, **kwargs: self._user_run(**kwargs)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/inference_schema/schema_decorators.py", line 64, in decorator_input
return user_run(*args, **kwargs)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/inference_schema/schema_decorators.py", line 92, in decorator_input
return user_run(*args, **kwargs)
File "/var/mlflow_resources/mlflow_score_script.py", line 215, in run
return _get_jsonable_obj(model.predict(input), pandas_orient="records")
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/mlflow/pyfunc/__init__.py", line 513, in predict
return self._predict_fn(data)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/mlflow/timeseries/__init__.py", line 345, in predict
y_res, _ = self.forecasting_model.forecast(X_pred=X_pred, y_pred=y_pred, ignore_data_errors=True)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/forecasting_pipeline_wrapper_base.py", line 585, in forecast
forecast, forecast_df = self._scenario_forecast(
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/forecasting_pipeline_wrapper_base.py", line 454, in _scenario_forecast
forecast, forecast_df = self._scenario_forecast_automl(
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/forecasting_pipeline_wrapper_base.py", line 541, in _scenario_forecast_automl
forecast, forecast_df = self._pipeline_forecast_internal(
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/forecasting_pipeline_wrapper.py", line 390, in _pipeline_forecast_internal
self._prepare_prediction_data_for_forecast(Xy_pred_in, ignore_data_errors=ignore_data_errors)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/azureml/training/tabular/models/forecasting_pipeline_wrapper_base.py", line 1815, in _prepare_prediction_data_for_forecast
tsds_one.data.iloc[forecast_first_irow:, missing_target_icol] = not_imputed_val
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/pandas/core/indexing.py", line 723, in __setitem__
iloc._setitem_with_indexer(indexer, value, self.name)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/pandas/core/indexing.py", line 1730, in _setitem_with_indexer
self._setitem_with_indexer_split_path(indexer, value, name)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/pandas/core/indexing.py", line 1758, in _setitem_with_indexer_split_path
lplane_indexer = length_of_indexer(pi, self.obj.index)
File "/azureml-envs/azureml-automl-dnn-gpu/lib/python3.9/site-packages/pandas/core/indexers.py", line 336, in length_of_indexer
elif start < 0:
TypeError: '<' not supported between instances of 'slice' and 'int'