When I am trying to create a chat playground I can't enable vector search for my "Azure AI Search" data source. The index has embedding included and I have embedding in my deployment.
The steps I have taken to get here.
- Go to Azure OpenAI Service
- Added two deployments
- gpt-4o-mini
- text-embedding-3-large
- Tried to use chat playground
- Selected my deployment
- gpt-4o-mini (version: 2024-07-18)
- Tried To Add Data Source With Vector Search Enabled
- clicked "Add a data Source"
- Selected "Azure AI Search" for my data source
- Selected my subscription
- Selected my Azure AI Search Service
- Selected my Azure AI Search Index
- At this point I would like to check the "Add vector search ..." checkbox but it is disabled
The checkbox "Add vector search..." is disabled.
Here is the index's json if that helps:
{
"name": "knowledge-index",
"fields": [
{
"name": "knowledge_id",
"type": "Edm.String",
"key": true,
"retrievable": true,
"stored": true,
"searchable": false,
"filterable": true,
"sortable": false,
"facetable": false,
"synonymMaps": []
},
{
"name": "contact_dt",
"type": "Edm.String",
"key": false,
"retrievable": true,
"stored": true,
"searchable": false,
"filterable": true,
"sortable": false,
"facetable": false,
"synonymMaps": []
},
{
"name": "reference_num",
"type": "Edm.String",
"key": false,
"retrievable": true,
"stored": true,
"searchable": true,
"filterable": true,
"sortable": true,
"facetable": true,
"synonymMaps": []
},
{
"name": "vector",
"type": "Collection(Edm.Single)",
"key": false,
"retrievable": true,
"stored": true,
"searchable": true,
"filterable": false,
"sortable": false,
"facetable": false,
"synonymMaps": [],
"dimensions": 3072,
"vectorSearchProfile": "myHnswProfile"
}
],
"scoringProfiles": [],
"corsOptions": {
"allowedOrigins": [
"*"
],
"maxAgeInSeconds": 300
},
"suggesters": [],
"analyzers": [],
"tokenizers": [],
"tokenFilters": [],
"charFilters": [],
"normalizers": [],
"similarity": {
"@odata.type": "#Microsoft.Azure.Search.BM25Similarity"
},
"semantic": {
"configurations": [
{
"name": "mySemanticConfig",
"prioritizedFields": {
"titleField": {
"fieldName": "serial_num"
},
"prioritizedContentFields": [
{
"fieldName": "text_serial_model"
}
],
"prioritizedKeywordsFields": []
}
}
]
},
"vectorSearch": {
"algorithms": [
{
"name": "myHnsw",
"kind": "hnsw",
"hnswParameters": {
"m": 4,
"efConstruction": 400,
"efSearch": 500,
"metric": "cosine"
}
},
{
"name": "myExhaustiveKnn",
"kind": "exhaustiveKnn",
"exhaustiveKnnParameters": {
"metric": "cosine"
}
}
],
"profiles": [
{
"name": "myHnswProfile",
"algorithm": "myHnsw",
"vectorizer": "vectorizer-1732168287035"
},
{
"name": "myExhaustiveKnnProfile",
"algorithm": "myExhaustiveKnn",
"vectorizer": "vectorizer-1732168287035"
},
{
"name": "vector-profile-1732168273201",
"algorithm": "myHnsw",
"vectorizer": "vectorizer-1732168287035"
}
],
"vectorizers": [
{
"name": "vectorizer-1732168287035",
"kind": "azureOpenAI",
"azureOpenAIParameters": {
"resourceUri": "https://oai-east.openai.azure.com",
"deploymentId": "text-embedding-3-large",
"apiKey": "<redacted>",
"modelName": "text-embedding-3-large"
}
}
],
"compressions": []
},
"@odata.etag": "\"0x8DD09F1043B4F27\""
}
I would like to use both vector and semantic. If I figure out how to enable vector search will the request converted to vectors and then sent to the model?
My desired result is that I will be able to enable vector search against my index in the chat playground.