@Alexey Pisakov
Please try the solution mentioned below.
The service takes data in form of deserialized pandas data frame. In the example below, it will look like:
import json
X_test = pd.DataFrame([
['2020-10-04 19:30:00', 1.29281, 1.29334, 1.29334, 1.29334, 1],
['2020-10-04 19:45:00', 1.29334, 1.29294, 1.29294, 1.29294, 1],
['2020-10-04 21:00:00', 1.29294, 1.29217, 1.29334, 1.29163, 34],
['2020-10-04 21:15:00', 1.29217, 1.29257, 1.29301, 1.29115, 195]],
columns=['date', 'number_1', 'number_2', 'number_3', 'number_4', 'integer']
)
test_sample = json.dumps({'data': X_test.to_dict(orient='records')})
test_sample
Which will result in JSON string as:
{"data": [{"date": "2020-10-04 19:30:00", "number_1": 1.29281, "number_2": 1.29334, "number_3": 1.29334, "number_4": 1.29334, "integer": 1}, {"date": "2020-10-04 19:45:00", "number_1": 1.29334, "number_2": 1.29294, "number_3": 1.29294, "number_4": 1.29294, "integer": 1}, {"date": "2020-10-04 21:00:00", "number_1": 1.29294, "number_2": 1.29217, "number_3": 1.29334, "number_4": 1.29163, "integer": 34}, {"date": "2020-10-04 21:15:00", "number_1": 1.29217, "number_2": 1.29257, "number_3": 1.29301, "number_4": 1.29115, "integer": 195}]}
Please rename the columns to the corresponding columns from the training data set.