By addressing the issue related to the "NotLabeledDatasetError" and verifying the dataset and module configurations, you should be able to resolve the error and successfully run the experiment.
Azure ML deployment error from designer "There is no label column in "Scored dataset"
Hello All,
We have developed below model. Model built and trained successfully. But while deploying as realtime inference it is throwing the error.
Below is the deployment log
2021/03/25 14:48:21 Attempt 1 of http call to http://10.0.0.4:16384/sendlogstoartifacts/info
2021/03/25 14:48:21 Attempt 1 of http call to http://10.0.0.4:16384/sendlogstoartifacts/status
[2021-03-25T14:48:23.131202] Entering context manager injector.
[context_manager_injector.py] Command line Options: Namespace(inject=['ProjectPythonPath:context_managers.ProjectPythonPath', 'Dataset:context_managers.Datasets', 'RunHistory:context_managers.RunHistory', 'TrackUserError:context_managers.TrackUserError'], invocation=['urldecode_invoker.py', 'python', '-m', 'azureml.studio.modulehost.module_invoker', '--module-name=azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module', '--evaluation-results', 'DatasetOutputConfig:Evaluation_results', '--scored-dataset=/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g'])
Script type = None
Starting the daemon thread to refresh tokens in background for process with pid = 79
[2021-03-25T14:48:25.777114] Entering Run History Context Manager.
[2021-03-25T14:48:26.588216] Current directory: /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/mounts/workspaceblobstore/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b
[2021-03-25T14:48:26.588401] Preparing to call script [urldecode_invoker.py] with arguments:['python', '-m', 'azureml.studio.modulehost.module_invoker', '--module-name=azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module', '--evaluation-results', '$Evaluation_results', '--scored-dataset=/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g']
[2021-03-25T14:48:26.588510] After variable expansion, calling script [urldecode_invoker.py] with arguments:['python', '-m', 'azureml.studio.modulehost.module_invoker', '--module-name=azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module', '--evaluation-results', '/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpbh275yuo', '--scored-dataset=/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g']
2021/03/25 14:48:26 Not exporting to RunHistory as the exporter is either stopped or there is no data.
Stopped: false
OriginalData: 1
FilteredData: 0.
Session_id = 77d2289a-878a-4d00-99c0-9d4112bd03b4
Invoking module by urldecode_invoker 0.0.8.
Module type: official module.
Using runpy to invoke module 'azureml.studio.modulehost.module_invoker'.
2021-03-25 14:48:27,284 studio.modulehost INFO Reset logging level to DEBUG
2021-03-25 14:48:27,284 studio.modulehost INFO Load pyarrow.parquet explicitly: <module 'pyarrow.parquet' from '/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/pyarrow/parquet.py'>
2021-03-25 14:48:27,284 studio.core INFO execute_with_cli - Start:
2021-03-25 14:48:27,284 studio.modulehost INFO | ALGHOST 0.0.150
2021-03-25 14:48:28,130 studio.modulehost INFO | CLI arguments parsed: {'module_name': 'azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module', 'OutputPortsInternal': {'Evaluation results': '/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpbh275yuo'}, 'InputPortsInternal': {'Scored dataset': '/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g'}}
2021-03-25 14:48:28,139 studio.modulehost INFO | Invoking ModuleEntry(azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module; EvaluateModelModule; run)
2021-03-25 14:48:28,139 studio.core DEBUG | Input Ports:
2021-03-25 14:48:28,139 studio.core DEBUG | | Scored dataset = <azureml.studio.modulehost.cli_parser.CliInputValue object at 0x7fe5ceeae5c0>
2021-03-25 14:48:28,139 studio.core DEBUG | Output Ports:
2021-03-25 14:48:28,139 studio.core DEBUG | | Evaluation results = /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpbh275yuo
2021-03-25 14:48:28,140 studio.core DEBUG | Parameters:
2021-03-25 14:48:28,140 studio.core DEBUG | | (empty)
2021-03-25 14:48:28,140 studio.core DEBUG | Environment Variables:
2021-03-25 14:48:28,140 studio.core DEBUG | | AZUREML_DATAREFERENCE_Scored_dataset = /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g
2021-03-25 14:48:28,140 studio.core INFO | Reflect input ports and parameters - Start:
2021-03-25 14:48:28,141 studio.core INFO | | Handle input port "Scored dataset" - Start:
2021-03-25 14:48:28,141 studio.core INFO | | | Mount/Download dataset to '/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g' - Start:
2021-03-25 14:48:28,141 studio.modulehost DEBUG | | | | Content of directory /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g:
2021-03-25 14:48:28,482 studio.modulehost DEBUG | | | | | _meta.yaml
2021-03-25 14:48:28,482 studio.modulehost DEBUG | | | | | _samples.json
2021-03-25 14:48:28,482 studio.modulehost DEBUG | | | | | data.dataset
2021-03-25 14:48:28,483 studio.modulehost DEBUG | | | | | data.dataset.parquet
2021-03-25 14:48:28,483 studio.modulehost DEBUG | | | | | data.metadata
2021-03-25 14:48:28,483 studio.modulehost DEBUG | | | | | data.schema
2021-03-25 14:48:28,483 studio.modulehost DEBUG | | | | | data.visualization
2021-03-25 14:48:28,483 studio.modulehost DEBUG | | | | | data_type.json
2021-03-25 14:48:28,891 studio.modulehost DEBUG | | | | | schema/_schema.json
2021-03-25 14:48:28,891 studio.core INFO | | | Mount/Download dataset to '/mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g' - End with 0.7505s elapsed.
2021-03-25 14:48:28,892 studio.core INFO | | | Try to read from /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g via meta - Start:
2021-03-25 14:48:29,215 studio.common INFO | | | | Load DataTableMeta successfully, path=data.dataset
2021-03-25 14:48:29,220 studio.common INFO | | | | Load meta data from directory successfully, data=DataFrameDirectory(meta={'type': 'DataFrameDirectory', 'visualization': [{'type': 'Visualization', 'path': 'data.visualization'}], 'extension': {'DataTableMeta': 'data.dataset'}, 'format': 'Parquet', 'data': 'data.dataset.parquet', 'samples': '_samples.json', 'schema': 'schema/_schema.json'}), type=<class 'azureml.studio.common.datatable.data_table_directory.DataTableDirectory'>
2021-03-25 14:48:29,224 studio.core INFO | | | Try to read from /mnt/batch/tasks/shared/LS_root/jobs/azuremldemo/azureml/7230c4b5-94a5-4af9-b5ff-5cd06433f19b/wd/tmpj67_av4g via meta - End with 0.3316s elapsed.
2021-03-25 14:48:29,224 studio.core INFO | | Handle input port "Scored dataset" - End with 1.0836s elapsed.
2021-03-25 14:48:29,225 studio.core INFO | | Handle input port "Scored dataset to compare" - Start:
2021-03-25 14:48:29,225 studio.modulehost WARNING | | | File 'None' does not exist.
2021-03-25 14:48:29,225 studio.core INFO | | Handle input port "Scored dataset to compare" - End with 0.0001s elapsed.
2021-03-25 14:48:29,225 studio.core INFO | Reflect input ports and parameters - End with 1.0843s elapsed.
2021-03-25 14:48:29,225 studio.core INFO | EvaluateModelModule.run - Start:
2021-03-25 14:48:29,225 studio.core DEBUG | | kwargs:
2021-03-25 14:48:29,225 studio.core DEBUG | | | scored_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>
2021-03-25 14:48:29,225 studio.core DEBUG | | | scored_data_to_compare = None
2021-03-25 14:48:29,226 studio.core DEBUG | | validated_args:
2021-03-25 14:48:29,226 studio.core DEBUG | | | scored_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>
2021-03-25 14:48:29,226 studio.core DEBUG | | | scored_data_to_compare = None
2021-03-25 14:48:29,226 studio.module INFO | | Validate input data (Scored Data).
2021-03-25 14:48:29,227 studio.core INFO | EvaluateModelModule.run - End with 0.0014s elapsed.
2021-03-25 14:48:29,227 studio.modulehost INFO | Set error info in module statistics
2021-03-25 14:48:29,227 studio.core INFO | Logging exception information of module execution - Start:
2021-03-25 14:48:29,227 studio.modulehost INFO | | Session_id = 77d2289a-878a-4d00-99c0-9d4112bd03b4
2021-03-25 14:48:29,227 studio.core INFO | | ModuleStatistics.log_stack_trace_telemetry - Start:
2021-03-25 14:48:29,769 studio.core INFO | | ModuleStatistics.log_stack_trace_telemetry - End with 0.5417s elapsed.
2021-03-25 14:48:29,769 studio.modulehost ERROR | | Get ModuleError when invoking ModuleEntry(azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module; EvaluateModelModule; run)
Traceback (most recent call last):
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 379, in exec
output_tuple = self._entry.func(**reflected_input_ports, **reflected_parameters)
reflected_input_ports = {'scored_data': <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>, 'scored_data_to_compare': None}
> reflected_parameters = {}
> self = <azureml.studio.modulehost.module_reflector.ModuleReflector object at 0x7fe5ceeae358>
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 76, in wrapper
ret = func(*args, **validated_args)
func = <function EvaluateModelModule.run at 0x7fe5cee95f28>
> args = ()
> validated_args = {'scored_data': <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>, 'scored_data_to_compare': None}
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 57, in run
output_values = EvaluateModelModule.evaluate_generic(**input_values)
input_values = {'scored_data_to_compare': None, 'scored_data': <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>, 'input_values': {...}}
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 168, in evaluate_generic
cls._validate_input(scored_data=scored_data, scored_data_to_compare=scored_data_to_compare)
cls = <class 'azureml.studio.modules.ml.evaluate.evaluate_generic_module.evaluate_generic_module.EvaluateModelModule'>
> scored_data = <azureml.studio.common.datatable.data_table.DataTable object at 0x7fe5cee5a668>
> scored_data_to_compare = None
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 146, in _validate_input
dataset_name=cls._args.scored_data.friendly_name)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 133, in _validate_data_table
error_setting.ErrorMapping.throw(error_setting.NotLabeledDatasetError(dataset_name=dataset_name))
dataset_name = 'Scored dataset'
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/common/error.py", line 821, in throw
raise err
err = NotLabeledDatasetError('There is no label column in "Scored dataset".',)
NotLabeledDatasetError: There is no label column in "Scored dataset".
2021-03-25 14:48:29,771 studio.core INFO | Logging exception information of module execution - End with 0.5435s elapsed.
2021-03-25 14:48:29,771 studio.core INFO | ModuleStatistics.save_to_azureml - Start:
2021-03-25 14:48:30,030 studio.core INFO | ModuleStatistics.save_to_azureml - End with 0.2591s elapsed.
2021-03-25 14:48:30,030 studio.core INFO execute_with_cli - End with 2.7457s elapsed.
Starting the daemon thread to refresh tokens in background for process with pid = 79
[2021-03-25T14:48:30.046295] The experiment failed. Finalizing run...
Cleaning up all outstanding Run operations, waiting 900.0 seconds
3 items cleaning up...
Cleanup took 0.22303390502929688 seconds
Starting the daemon thread to refresh tokens in background for process with pid = 79
Traceback (most recent call last):
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_invoker.py", line 7, in <module>
execute(sys.argv)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_host_executor.py", line 41, in execute
return execute_with_cli(original_args)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/core/logger.py", line 209, in wrapper
ret = func(*args, **kwargs)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_host_executor.py", line 52, in execute_with_cli
do_execute_with_env(parser, FolderRuntimeEnv())
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_host_executor.py", line 68, in do_execute_with_env
module_statistics_folder=parser.module_statistics_folder
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 397, in exec
self._handle_exception(bex)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 471, in _handle_exception
raise exception
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 379, in exec
output_tuple = self._entry.func(**reflected_input_ports, **reflected_parameters)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modulehost/module_reflector.py", line 76, in wrapper
ret = func(*args, **validated_args)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 57, in run
output_values = EvaluateModelModule.evaluate_generic(**input_values)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 168, in evaluate_generic
cls._validate_input(scored_data=scored_data, scored_data_to_compare=scored_data_to_compare)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 146, in _validate_input
dataset_name=cls._args.scored_data.friendly_name)
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/modules/ml/evaluate/evaluate_generic_module/evaluate_generic_module.py", line 133, in _validate_data_table
error_setting.ErrorMapping.throw(error_setting.NotLabeledDatasetError(dataset_name=dataset_name))
File "/azureml-envs/azureml_27ff1befbcbf963c2543a3994cfbad97/lib/python3.6/site-packages/azureml/studio/common/error.py", line 821, in throw
raise err
azureml.studio.common.error.NotLabeledDatasetError: There is no label column in "Scored dataset".
[2021-03-25T14:48:31.272570] Finished context manager injector with Exception.
2021/03/25 14:48:32 Could not parse control script error at path: /mnt/batch/tasks/workitems/335323a5-4a6b-472a-8676-f079f4b45127/job-1/7230c4b5-94a5-4af9-b_d7e8588d-bb39-4e7e-b730-1d9bc350919b/wd/runTaskLetTask_error.json because: File /mnt/batch/tasks/workitems/335323a5-4a6b-472a-8676-f079f4b45127/job-1/7230c4b5-94a5-4af9-b_d7e8588d-bb39-4e7e-b730-1d9bc350919b/wd/runTaskLetTask_error.json doesn't exist, continuing without
2021/03/25 14:48:32 Failed to run the wrapper cmd with err: exit status 1
2021/03/25 14:48:32 Attempt 1 of http call to http://10.0.0.4:16384/sendlogstoartifacts/status
2021/03/25 14:48:32 mpirun version string: {
Intel(R) MPI Library for Linux* OS, Version 2018 Update 3 Build 20180411 (id: 18329)
Copyright 2003-2018 Intel Corporation.
}
2021/03/25 14:48:32 MPI publisher: intel ; version: 2018
2021/03/25 14:48:32 Not exporting to RunHistory as the exporter is either stopped or there is no data.
Stopped: false
OriginalData: 2
FilteredData: 0.
2021/03/25 14:48:32 Process Exiting with Code: 1
Azure Machine Learning
1 answer
Sort by: Most helpful
-
Vahid Ghafarpour 23,385 Reputation points Volunteer Moderator
2023-08-06T06:57:54.57+00:00