Job failed due to reason: at Source... ...Job aborted due to stage failure

Steven Howe 111 Reputation points
2021-04-15T20:01:24.453+00:00

I have a pipeline in Synapse which calls a data flow. That data flow has started to fail and return the below error.

{"message":"Job failed due to reason: at Source 'RawTransaction': org.apache.spark.SparkException: Job aborted due to stage failure: Task 8 in stage 43.0 failed 4 times, most recent failure: Lost task 8.3 in stage 43.0 (TID 3283, 58924e9c16f8411a93ee73d20b870adc0004d790991, executor 1): org.apache.spark.SparkException: Exception thrown in awaitResult: \n\tat org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226)\n\tat org.apache.spark.util.ThreadUtils$.parmap(ThreadUtils.scala:290)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$.readParquetFootersInParallel(ParquetFileFormat.scala:538)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$9.apply(ParquetFileFormat.scala:611)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$9.apply(ParquetFileFormat.scala:603)\n\tat org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:823)\n\tat org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.app. Details:at Source 'RawTransaction': org.apache.spark.SparkException: Job aborted due to stage failure: Task 8 in stage 43.0 failed 4 times, most recent failure: Lost task 8.3 in stage 43.0 (TID 3283, 58924e9c16f8411a93ee73d20b870adc0004d790991, executor 1): org.apache.spark.SparkException: Exception thrown in awaitResult: \n\tat org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226)\n\tat org.apache.spark.util.ThreadUtils$.parmap(ThreadUtils.scala:290)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$.readParquetFootersInParallel(ParquetFileFormat.scala:538)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$9.apply(ParquetFileFormat.scala:611)\n\tat org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$9.apply(ParquetFileFormat.scala:603)\n\tat org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:823)\n\tat org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:823)\n\tat org.","failureType":"UserError","target":"Prepare_forsight_All","errorCode":"DFExecutorUserError"}

I have tried switching from memory optimised to general compute, and increasing the cores on the IR but to no resolution.

Azure Data Lake Storage
Azure Data Lake Storage
An Azure service that provides an enterprise-wide hyper-scale repository for big data analytic workloads and is integrated with Azure Blob Storage.
1,562 questions
Azure Synapse Analytics
Azure Synapse Analytics
An Azure analytics service that brings together data integration, enterprise data warehousing, and big data analytics. Previously known as Azure SQL Data Warehouse.
5,378 questions
Azure Data Factory
Azure Data Factory
An Azure service for ingesting, preparing, and transforming data at scale.
11,644 questions
{count} votes

Accepted answer
  1. Steven Howe 111 Reputation points
    2021-04-15T20:56:31.117+00:00

    I was able to resolve this issue. There were two corrupted files out of many hundreds that were fine in the source. Removing these two corrupted files allowed the data flow to process and complete successfully again as normal.

    2 people found this answer helpful.

1 additional answer

Sort by: Most helpful
  1. praveen sharma 1 Reputation point
    2022-02-16T15:36:36.977+00:00

    this worked for me as well, thank you so much for sharing.

    0 comments No comments

Your answer

Answers can be marked as Accepted Answers by the question author, which helps users to know the answer solved the author's problem.