Here is the code which was executing on the cloud compute Jupyter Notebool:
from azureml.__version__ import __version__ as _azml_version_
from azureml.core import __version__ as _azmlcore_version_
from azureml.train.automl import __version__ as _azmltrain_version_
print('azure', _azml_version_)
print(' core', _azmlcore_version_)
print('train', _azmltrain_version_)
from azureml.core.experiment import Experiment
from azureml.core import Workspace, Datastore
from azureml.core.webservice import AciWebservice
from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.webservice import LocalWebservice
from azureml.core.model import Model
ws = Workspace.from_config()
PROJECT = 'qtc'
data_date = '2021-06-08'
experiment_date = "2021-07-25"
dd_name = data_date.replace('-', '')
ed_name = experiment_date.replace('-', '')
detail = 'conditional-select'
# Choose a name for the experiment and specify the project folder.
experiment_name = '-'.join(['qtc', ed_name, detail.replace(' ' , '-')])
experiment = Experiment(ws, experiment_name)
aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
memory_gb=2,
tags={"data": "qtc segment trimmed", "method" : "selective model"},
description='Estimate order completion time')
deployment_config = LocalWebservice.deploy_configuration(port=8890)
env = Environment.get(ws, "AzureML-AutoML").clone('qtc_env')
inference_config = InferenceConfig(entry_script="score_20210726.py",
environment=env, source_directory=os.path.join(os.getcwd(), 'source'))
service = Model.deploy(workspace=ws,
name='selective-model',
models=[],
inference_config=inference_config,
deployment_config=aciconfig,
#deployment_config=deployment_config,
overwrite=True)
service.wait_for_deployment(show_output=True)
service.delete()
package = Model.package(ws, [], inference_config)
package.wait_for_creation(show_output=True)