Yuma Taniguchi - Thanks for the question and using MS Q&A Platform.
Writing application logs directly to a Unity Catalog volume using Python’s logging.FileHandler is not supported in Databricks. Unity Catalog volumes are designed for storing data files, not for direct file I/O operations from Python. When you specify a path like:
/Volumes/catalog_name/schema_name/volume_name/logs/app.log
Note: The logger does not throw an error, but the file is never created because the volume is not mounted as a standard local filesystem.
You can run the same code inside a Databricks notebook, where the /Volumes directory is available. Here’s the exact snippet to use in your Databricks notebook:
# Define the directory and file path
log_dir = "/Volumes/workspace/default/chepra/"
dbutils.fs.mkdirs(log_dir) # Use Databricks utility for creating directories
file_path = f"{log_dir}logger.py"
# Define the logger file content
logger_code = """import logging
import os
# Define log file path inside the Databricks volume
log_dir = "/Volumes/workspace/default/chepra/"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, "app.log")
# Configure logger
logger = logging.getLogger("databricks_logger")
logger.setLevel(logging.INFO)
# Create file handler
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
# Create formatter
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatter)
# Add handler to logger
logger.addHandler(file_handler)
# Example usage
if __name__ == "__main__":
logger.info("Logger initialized successfully!")
logger.warning("This is a warning message.")
logger.error("This is an error message.")
"""
# Write the file to the volume
with open(file_path, "w") as f:
f.write(logger_code)
print(f"Logger file created successfully at: {file_path}")
✅ This will create logger.py in /Volumes/workspace/default/chepra/ and set up logging to app.log in the same directory.
Hope this helps. Let me know if you have any further questions or need additional assistance. Also, if these answers your query, do click the "Upvote" and click "Accept the answer" of which might be beneficial to other community members reading this thread.
𝘛𝘰 𝘴𝘵𝘢𝘺 𝘪𝘯𝘧𝘰𝘳𝘮𝘦𝘥 𝘢𝘣𝘰𝘶𝘵 𝘵𝘩𝘦 𝘭𝘢𝘵𝘦𝘴𝘵 𝘶𝘱𝘥𝘢𝘵𝘦𝘴 𝘢𝘯𝘥 𝘪𝘯𝘴𝘪𝘨𝘩𝘵𝘴 𝘰𝘯 𝘈𝘻𝘶𝘳𝘦 𝘋𝘢𝘵𝘢𝘣𝘳𝘪𝘤𝘬𝘴, 𝘥𝘢𝘵𝘢 𝘦𝘯𝘨𝘪𝘯𝘦𝘦𝘳𝘪𝘯𝘨, 𝘢𝘯𝘥 Data & AI 𝘪𝘯𝘯𝘰𝘷𝘢𝘵𝘪𝘰𝘯𝘴, 𝘧𝘰𝘭𝘭𝘰𝘸 𝘮𝘦 𝘰𝘯 𝘓𝘪𝘯𝘬𝘦𝘥𝘐𝘯.