Events
Mar 31, 11 PM - Apr 2, 11 PM
The ultimate Microsoft Fabric, Power BI, SQL, and AI community-led event. March 31 to April 2, 2025.
Register todayThis browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
Note
This isn't the latest version of this article. For the current release, see the .NET 9 version of this article.
Warning
This version of ASP.NET Core is no longer supported. For more information, see the .NET and .NET Core Support Policy. For the current release, see the .NET 9 version of this article.
Important
This information relates to a pre-release product that may be substantially modified before it's commercially released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
For the current release, see the .NET 9 version of this article.
This article explains how to host and deploy Blazor WebAssembly using ASP.NET Core, Content Delivery Networks (CDN), file servers, and GitHub Pages.
With the Blazor WebAssembly hosting model:
This article pertains to the deployment scenario where the Blazor app is placed on a static hosting web server or service, .NET isn't used to serve the Blazor app. This strategy is covered in the Standalone deployment section, which includes information on hosting a Blazor WebAssembly app as an IIS sub-app.
The following deployment strategies are supported:
Subdomain hosting doesn't require special configuration of the app. You don't need to configure the app base path (the <base>
tag in wwwroot/index.html
) to host the app at a subdomain.
IIS sub-application hosting does require you to set the app base path. For more information and cross-links to further guidance on IIS sub-application hosting, see Host and deploy ASP.NET Core Blazor.
When building a Blazor app that runs on the client (.Client
project of a Blazor Web App or standalone Blazor WebAssembly app) and targets mobile device browsers, especially Safari on iOS, decreasing the maximum memory for the app with the MSBuild property EmccMaximumHeapSize
may be required. The default value is 2,147,483,648 bytes, which may be too large and result in the app crashing if the app attempts to allocate more memory with the browser failing to grant it. The following example sets the value to 268,435,456 bytes in the Program
file:
When building a Blazor WebAssembly app that targets mobile device browsers, especially Safari on iOS, decreasing the maximum memory for the app with the MSBuild property EmccMaximumHeapSize
may be required. The default value is 2,147,483,648 bytes, which may be too large and result in the app crashing if the app attempts to allocate more memory with the browser failing to grant it. The following example sets the value to 268,435,456 bytes in the Program
file:
<EmccMaximumHeapSize>268435456</EmccMaximumHeapSize>
For more information on Mono/WebAssembly MSBuild properties and targets, see WasmApp.Common.targets
(dotnet/runtime
GitHub repository).
Webcil is a web-friendly packaging format for .NET assemblies designed to enable using Blazor WebAssembly in restrictive network environments. Webcil files use a standard WebAssembly wrapper, where the assemblies are deployed as WebAssembly files that use the standard .wasm
file extension.
Webcil is the default packaging format when you publish a Blazor WebAssembly app. To disable the use of Webcil, set the following MSBuild property in the app's project file:
<PropertyGroup>
<WasmEnableWebcil>false</WasmEnableWebcil>
</PropertyGroup>
Customize how boot resources are loaded using the loadBootResource
API. For more information, see ASP.NET Core Blazor startup.
When a Blazor WebAssembly app is published, the output is statically compressed during publish to reduce the app's size and remove the overhead for runtime compression. The following compression algorithms are used:
Blazor relies on the host to serve the appropriate compressed files. When hosting a Blazor WebAssembly standalone app, additional work might be required to ensure that statically-compressed files are served:
Blazor relies on the host to serve the appropriate compressed files. When using an ASP.NET Core Hosted Blazor WebAssembly project, the host project is capable of performing content negotiation and serving the statically-compressed files. When hosting a Blazor WebAssembly standalone app, additional work might be required to ensure that statically-compressed files are served:
web.config
compression configuration, see the IIS: Brotli and Gzip compression section.Obtain the JavaScript Brotli decoder from the google/brotli
GitHub repository. The minified decoder file is named decode.min.js
and found in the repository's js
folder.
Note
If the minified version of the decode.js
script (decode.min.js
) fails, try using the unminified version (decode.js
) instead.
Update the app to use the decoder.
In the wwwroot/index.html
file, set autostart
to false
on Blazor's <script>
tag:
<script src="_framework/blazor.webassembly.js" autostart="false"></script>
After Blazor's <script>
tag and before the closing </body>
tag, add the following JavaScript code <script>
block. The following function calls fetch
with cache: 'no-cache'
to keep the browser's cache updated.
Blazor Web App:
<script type="module">
import { BrotliDecode } from './decode.min.js';
Blazor.start({
webAssembly: {
loadBootResource: function (type, name, defaultUri, integrity) {
if (type !== 'dotnetjs' && location.hostname !== 'localhost' && type !== 'configuration' && type !== 'manifest') {
return (async function () {
const response = await fetch(defaultUri + '.br', { cache: 'no-cache' });
if (!response.ok) {
throw new Error(response.statusText);
}
const originalResponseBuffer = await response.arrayBuffer();
const originalResponseArray = new Int8Array(originalResponseBuffer);
const decompressedResponseArray = BrotliDecode(originalResponseArray);
const contentType = type ===
'dotnetwasm' ? 'application/wasm' : 'application/octet-stream';
return new Response(decompressedResponseArray,
{ headers: { 'content-type': contentType } });
})();
}
}
}
});
</script>
Standalone Blazor WebAssembly:
<script type="module">
import { BrotliDecode } from './decode.min.js';
Blazor.start({
loadBootResource: function (type, name, defaultUri, integrity) {
if (type !== 'dotnetjs' && location.hostname !== 'localhost' && type !== 'configuration') {
return (async function () {
const response = await fetch(defaultUri + '.br', { cache: 'no-cache' });
if (!response.ok) {
throw new Error(response.statusText);
}
const originalResponseBuffer = await response.arrayBuffer();
const originalResponseArray = new Int8Array(originalResponseBuffer);
const decompressedResponseArray = BrotliDecode(originalResponseArray);
const contentType = type ===
'dotnetwasm' ? 'application/wasm' : 'application/octet-stream';
return new Response(decompressedResponseArray,
{ headers: { 'content-type': contentType } });
})();
}
}
});
</script>
For more information on loading boot resources, see ASP.NET Core Blazor startup.
To disable compression, add the CompressionEnabled
MSBuild property to the app's project file and set the value to false
:
<PropertyGroup>
<CompressionEnabled>false</CompressionEnabled>
</PropertyGroup>
The CompressionEnabled
property can be passed to the dotnet publish
command with the following syntax in a command shell:
dotnet publish -p:CompressionEnabled=false
To disable compression, add the BlazorEnableCompression
MSBuild property to the app's project file and set the value to false
:
<PropertyGroup>
<BlazorEnableCompression>false</BlazorEnableCompression>
</PropertyGroup>
The BlazorEnableCompression
property can be passed to the dotnet publish
command with the following syntax in a command shell:
dotnet publish -p:BlazorEnableCompression=false
Routing requests for page components in a Blazor WebAssembly app isn't as straightforward as routing requests in a Blazor Server app. Consider a Blazor WebAssembly app with two components:
Main.razor
: Loads at the root of the app and contains a link to the About
component (href="About"
).About.razor
: About
component.When the app's default document is requested using the browser's address bar (for example, https://www.contoso.com/
):
index.html
.index.html
bootstraps the app.Main
component is rendered.In the Main page, selecting the link to the About
component works on the client because the Blazor router stops the browser from making a request on the Internet to www.contoso.com
for About
and serves the rendered About
component itself. All of the requests for internal endpoints within the Blazor WebAssembly app work the same way: Requests don't trigger browser-based requests to server-hosted resources on the Internet. The router handles the requests internally.
If a request is made using the browser's address bar for www.contoso.com/About
, the request fails. No such resource exists on the app's Internet host, so a 404 - Not Found response is returned.
Because browsers make requests to Internet-based hosts for client-side pages, web servers and hosting services must rewrite all requests for resources not physically on the server to the index.html
page. When index.html
is returned, the app's Blazor router takes over and responds with the correct resource.
When deploying to an IIS server, you can use the URL Rewrite Module with the app's published web.config
file. For more information, see the IIS section.
A hosted deployment serves the Blazor WebAssembly app to browsers from an ASP.NET Core app that runs on a web server.
The client Blazor WebAssembly app is published into the /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot
folder of the server app, along with any other static web assets of the server app. The two apps are deployed together. A web server that is capable of hosting an ASP.NET Core app is required. For a hosted deployment, Visual Studio includes the Blazor WebAssembly App project template (blazorwasm
template when using the dotnet new
command) with the Hosted
option selected (-ho|--hosted
when using the dotnet new
command).
For more information, see the following articles:
To deploy a hosted Blazor WebAssembly app as a framework-dependent executable for a specific platform (not self-contained) use the following guidance based on the tooling in use.
A self-contained deployment is configured for a generated publish profile (.pubxml
). Confirm that the Server project's publish profile contains the <SelfContained>
MSBuild property set to false
.
In the .pubxml
publish profile file in the Server project's Properties
folder:
<SelfContained>false</SelfContained>
Set the Runtime Identifier (RID) using the Target Runtime setting in the Settings area of the Publish UI, which generates the <RuntimeIdentifier>
MSBuild property in the publish profile:
<RuntimeIdentifier>{RID}</RuntimeIdentifier>
In the preceding configuration, the {RID}
placeholder is the Runtime Identifier (RID).
Publish the Server project in the Release configuration.
Note
It's possible to publish an app with publish profile settings using the .NET CLI by passing /p:PublishProfile={PROFILE}
to the dotnet publish
command, where the {PROFILE}
placeholder is the profile. For more information, see the Publish profiles and Folder publish example sections in the Visual Studio publish profiles (.pubxml) for ASP.NET Core app deployment article. If you pass the RID in the dotnet publish
command and not in the publish profile, use the MSBuild property (/p:RuntimeIdentifier
) with the command, not with the -r|--runtime
option.
Configure a self-contained deployment by placing the <SelfContained>
MSBuild property in a <PropertyGroup>
in the Server project's project file set to false
:
<SelfContained>false</SelfContained>
Important
The SelfContained
property must be placed in the Server project's project file. The property can't be set correctly with the dotnet publish
command using the --no-self-contained
option or the MSBuild property /p:SelfContained=false
.
Set the Runtime Identifier (RID) using either of the following approaches:
Option 1: Set the RID in a <PropertyGroup>
in the Server project's project file:
<RuntimeIdentifier>{RID}</RuntimeIdentifier>
In the preceding configuration, the {RID}
placeholder is the Runtime Identifier (RID).
Publish the app in the Release configuration from the Server project:
dotnet publish -c Release
Option 2: Pass the RID in the dotnet publish
command as the MSBuild property (/p:RuntimeIdentifier
), not with the -r|--runtime
option:
dotnet publish -c Release /p:RuntimeIdentifier={RID}
In the preceding command, the {RID}
placeholder is the Runtime Identifier (RID).
For more information, see the following articles:
For more information, see Multiple hosted ASP.NET Core Blazor WebAssembly apps.
A standalone deployment serves the Blazor WebAssembly app as a set of static files that are requested directly by clients. Any static file server is able to serve the Blazor app.
Standalone deployment assets are published into either the /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot
or bin\Release\{TARGET FRAMEWORK}\browser-wasm\publish\
folder (depending on the version of the .NET SDK in use), where the {TARGET FRAMEWORK}
placeholder is the target framework.
Blazor WebAssembly apps can be deployed to Azure App Services on Windows, which hosts the app on IIS.
Deploying a standalone Blazor WebAssembly app to Azure App Service for Linux isn't currently supported. We recommend hosting a standalone Blazor WebAssembly app using Azure Static Web Apps, which supports this scenario.
Use one of the following approaches to deploy a Blazor WebAssembly app to Azure Static Web Apps:
To deploy from Visual Studio, create a publish profile for Azure Static Web Apps:
Save any unsaved work in the project, as a Visual Studio restart might be required during the process.
In Visual Studio's Publish UI, select Target > Azure > Specific Target > Azure Static Web Apps to create a publish profile.
If the Azure WebJobs Tools component for Visual Studio isn't installed, a prompt appears to install the ASP.NET and web development component. Follow the prompts to install the tools using the Visual Studio Installer. Visual Studio closes and reopens automatically while installing the tools. After the tools are installed, start over at the first step to create the publish profile.
In the publish profile configuration, provide the Subscription name. Select an existing instance, or select Create a new instance. When creating a new instance in the Azure portal's Create Static Web App UI, set the Deployment details > Source to Other. Wait for the deployment to complete in the Azure portal before proceeding.
In the publish profile configuration, select the Azure Static Web Apps instance from the instance's resource group. Select Finish to create the publish profile. If Visual Studio prompts to install the Static Web Apps (SWA) CLI, install the CLI by following the prompts. The SWA CLI requires NPM/Node.js (Visual Studio documentation).
After the publish profile is created, deploy the app to the Azure Static Web Apps instance using the publish profile by selecting the Publish button.
To deploy from Visual Studio Code, see Quickstart: Build your first static site with Azure Static Web Apps.
To deploy from a GitHub repository, see Tutorial: Building a static web app with Blazor in Azure Static Web Apps.
IIS is a capable static file server for Blazor apps. To configure IIS to host Blazor, see Build a Static Website on IIS.
Published assets are created in the /bin/Release/{TARGET FRAMEWORK}/publish
or bin\Release\{TARGET FRAMEWORK}\browser-wasm\publish
folder, depending on which version of the SDK is used and where the {TARGET FRAMEWORK}
placeholder is the target framework. Host the contents of the publish
folder on the web server or hosting service.
When a Blazor project is published, a web.config
file is created with the following IIS configuration:
application/octet-stream
application/wasm
wwwroot/{PATH REQUESTED}
).wwwroot/index.html
).To use a custom web.config
file:
web.config
file in the project's root folder.web.config
file in the project's root folder. For a hosted Blazor WebAssembly solution, place the file in the Server project's folder.If the SDK's web.config
generation or transformation during publish either doesn't move the file to published assets in the publish
folder or modifies the custom configuration in your custom web.config
file, use any of the following approaches as needed to take full control of the process:
If the SDK doesn't generate the file, for example, in a standalone Blazor WebAssembly app at /bin/Release/{TARGET FRAMEWORK}/publish/wwwroot
or bin\Release\{TARGET FRAMEWORK}\browser-wasm\publish
, depending on which version of the SDK is used and where the {TARGET FRAMEWORK}
placeholder is the target framework, set the <PublishIISAssets>
property to true
in the project file (.csproj
). Usually for standalone WebAssembly apps, this is the only required setting to move a custom web.config
file and prevent transformation of the file by the SDK.
<PropertyGroup>
<PublishIISAssets>true</PublishIISAssets>
</PropertyGroup>
Disable the SDK's web.config
transformation in the project file (.csproj
):
<PropertyGroup>
<IsTransformWebConfigDisabled>true</IsTransformWebConfigDisabled>
</PropertyGroup>
Add a custom target to the project file (.csproj
) to move a custom web.config
file. In the following example, the custom web.config
file is placed by the developer at the root of the project. If the web.config
file resides elsewhere, specify the path to the file in SourceFiles
. The following example specifies the publish
folder with $(PublishDir)
, but provide a path to DestinationFolder
for a custom output location.
<Target Name="CopyWebConfig" AfterTargets="Publish">
<Copy SourceFiles="web.config" DestinationFolder="$(PublishDir)" />
</Target>
The URL Rewrite Module is required to rewrite URLs. The module isn't installed by default, and it isn't available for install as a Web Server (IIS) role service feature. The module must be downloaded from the IIS website. Use the Web Platform Installer to install the module:
Set the website's Physical path to the app's folder. The folder contains:
web.config
file that IIS uses to configure the website, including the required redirect rules and file content types.If a standalone app is hosted as an IIS sub-app, perform either of the following:
Disable the inherited ASP.NET Core Module handler.
Remove the handler in the Blazor app's published web.config
file by adding a <handlers>
section to the <system.webServer>
section of the file:
<handlers>
<remove name="aspNetCore" />
</handlers>
Disable inheritance of the root (parent) app's <system.webServer>
section using a <location>
element with inheritInChildApplications
set to false
:
<?xml version="1.0" encoding="utf-8"?>
<configuration>
<location path="." inheritInChildApplications="false">
<system.webServer>
<handlers>
<add name="aspNetCore" ... />
</handlers>
<aspNetCore ... />
</system.webServer>
</location>
</configuration>
Note
Disabling inheritance of the root (parent) app's <system.webServer>
section is the default configuration for published apps using the .NET SDK.
Removing the handler or disabling inheritance is performed in addition to configuring the app's base path. Set the app base path in the app's index.html
file to the IIS alias used when configuring the sub-app in IIS.
Configure the app's base path by following the guidance in the Host and deploy ASP.NET Core Blazor article.
This section only applies to standalone Blazor WebAssembly apps.
This section only applies to standalone Blazor WebAssembly apps. Hosted Blazor apps use a default ASP.NET Core app web.config
file, not the file linked in this section.
IIS can be configured via web.config
to serve Brotli or Gzip compressed Blazor assets for standalone Blazor WebAssembly apps. For an example configuration file, see web.config
.
Additional configuration of the example web.config
file might be required in the following scenarios:
web.config
file.web.config
file in an uncompressed format.applicationHost.config
) provides server-level IIS defaults. Depending on the server-level configuration, the app might require a different IIS configuration than what the example web.config
file contains.For more information on custom web.config
files, see the Use a custom web.config
section.
If a 500 - Internal Server Error is received and IIS Manager throws errors when attempting to access the website's configuration, confirm that the URL Rewrite Module is installed. When the module isn't installed, the web.config
file can't be parsed by IIS. This prevents the IIS Manager from loading the website's configuration and the website from serving Blazor's static files.
For more information on troubleshooting deployments to IIS, see Troubleshoot ASP.NET Core on Azure App Service and IIS.
Azure Storage static file hosting allows serverless Blazor app hosting. Custom domain names, the Azure Content Delivery Network (CDN), and HTTPS are supported.
When the blob service is enabled for static website hosting on a storage account:
index.html
.index.html
. Razor components and other non-file endpoints don't reside at physical paths in the static content stored by the blob service. When a request for one of these resources is received that the Blazor router should handle, the 404 - Not Found error generated by the blob service routes the request to the Error document path. The index.html
blob is returned, and the Blazor router loads and processes the path.If files aren't loaded at runtime due to inappropriate MIME types in the files' Content-Type
headers, take either of the following actions:
Configure your tooling to set the correct MIME types (Content-Type
headers) when the files are deployed.
Change the MIME types (Content-Type
headers) for the files after the app is deployed.
In Storage Explorer (Azure portal) for each file:
For more information, see Static website hosting in Azure Storage.
The following nginx.conf
file is simplified to show how to configure Nginx to send the index.html
file whenever it can't find a corresponding file on disk.
events { }
http {
server {
listen 80;
location / {
root /usr/share/nginx/html;
try_files $uri $uri/ /index.html =404;
}
}
}
When setting the NGINX burst rate limit with limit_req
, Blazor WebAssembly apps may require a large burst
parameter value to accommodate the relatively large number of requests made by an app. Initially, set the value to at least 60:
http {
server {
...
location / {
...
limit_req zone=one burst=60 nodelay;
}
}
}
Increase the value if browser developer tools or a network traffic tool indicates that requests are receiving a 503 - Service Unavailable status code.
For more information on production Nginx web server configuration, see Creating NGINX Plus and NGINX Configuration Files.
To deploy a Blazor WebAssembly app to Apache:
Create the Apache configuration file. The following example is a simplified configuration file (blazorapp.config
):
<VirtualHost *:80>
ServerName www.example.com
ServerAlias *.example.com
DocumentRoot "/var/www/blazorapp"
ErrorDocument 404 /index.html
AddType application/wasm .wasm
<Directory "/var/www/blazorapp">
Options -Indexes
AllowOverride None
</Directory>
<IfModule mod_deflate.c>
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/javascript
AddOutputFilterByType DEFLATE text/html
AddOutputFilterByType DEFLATE application/octet-stream
AddOutputFilterByType DEFLATE application/wasm
<IfModule mod_setenvif.c>
BrowserMatch ^Mozilla/4 gzip-only-text/html
BrowserMatch ^Mozilla/4.0[678] no-gzip
BrowserMatch bMSIE !no-gzip !gzip-only-text/html
</IfModule>
</IfModule>
ErrorLog /var/log/httpd/blazorapp-error.log
CustomLog /var/log/httpd/blazorapp-access.log common
</VirtualHost>
Create the Apache configuration file. The following example is a simplified configuration file (blazorapp.config
):
<VirtualHost *:80>
ServerName www.example.com
ServerAlias *.example.com
DocumentRoot "/var/www/blazorapp"
ErrorDocument 404 /index.html
AddType application/wasm .wasm
AddType application/octet-stream .dll
<Directory "/var/www/blazorapp">
Options -Indexes
AllowOverride None
</Directory>
<IfModule mod_deflate.c>
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/javascript
AddOutputFilterByType DEFLATE text/html
AddOutputFilterByType DEFLATE application/octet-stream
AddOutputFilterByType DEFLATE application/wasm
<IfModule mod_setenvif.c>
BrowserMatch ^Mozilla/4 gzip-only-text/html
BrowserMatch ^Mozilla/4.0[678] no-gzip
BrowserMatch bMSIE !no-gzip !gzip-only-text/html
</IfModule>
</IfModule>
ErrorLog /var/log/httpd/blazorapp-error.log
CustomLog /var/log/httpd/blazorapp-access.log common
</VirtualHost>
Place the Apache configuration file into the /etc/httpd/conf.d/
directory.
Place the app's published assets (/bin/Release/{TARGET FRAMEWORK}/publish/wwwroot
, where the {TARGET FRAMEWORK}
placeholder is the target framework) into the /var/www/blazorapp
directory (the location specified to DocumentRoot
in the configuration file).
Restart the Apache service.
For more information, see mod_mime
and mod_deflate
.
The default GitHub Action, which deploys pages, skips deployment of folders starting with underscore, for example, the _framework
folder. To deploy folders starting with underscore, add an empty .nojekyll
file to the Git branch.
Git treats JavaScript (JS) files, such as blazor.webassembly.js
, as text and converts line endings from CRLF (carriage return-line feed) to LF (line feed) in the deployment pipeline. These changes to JS files produce different file hashes than Blazor sends to the client in the blazor.boot.json
file. The mismatches result in integrity check failures on the client. One approach to solving this problem is to add a .gitattributes
file with *.js binary
line before adding the app's assets to the Git branch. The *.js binary
line configures Git to treat JS files as binary files, which avoids processing the files in the deployment pipeline. The file hashes of the unprocessed files match the entries in the blazor.boot.json
file, and client-side integrity checks pass. For more information, see ASP.NET Core Blazor WebAssembly .NET runtime and app bundle caching.
To handle URL rewrites, add a wwwroot/404.html
file with a script that handles redirecting the request to the index.html
page. For an example, see the SteveSandersonMS/BlazorOnGitHubPages
GitHub repository:
When using a project site instead of an organization site, update the <base>
tag in wwwroot/index.html
. Set the href
attribute value to the GitHub repository name with a trailing slash (for example, /my-repository/
). In the SteveSandersonMS/BlazorOnGitHubPages
GitHub repository, the base href
is updated at publish by the .github/workflows/main.yml
configuration file.
Note
The SteveSandersonMS/BlazorOnGitHubPages
GitHub repository isn't owned, maintained, or supported by the .NET Foundation or Microsoft.
A standalone Blazor WebAssembly app is published as a set of static files for hosting by a static file server.
To host the app in Docker:
publish
folder assets to a location folder defined in the web server for serving static files.For configuration guidance, see the following resources:
Blazor WebAssembly apps can accept the following host configuration values as command-line arguments at runtime in the development environment.
The --contentroot
argument sets the absolute path to the directory that contains the app's content files (content root). In the following examples, /content-root-path
is the app's content root path.
Pass the argument when running the app locally at a command prompt. From the app's directory, execute:
dotnet watch --contentroot=/content-root-path
Add an entry to the app's launchSettings.json
file in the IIS Express profile. This setting is used when the app is run with the Visual Studio Debugger and from a command prompt with dotnet watch
(or dotnet run
).
"commandLineArgs": "--contentroot=/content-root-path"
In Visual Studio, specify the argument in Properties > Debug > Application arguments. Setting the argument in the Visual Studio property page adds the argument to the launchSettings.json
file.
--contentroot=/content-root-path
The --pathbase
argument sets the app base path for an app run locally with a non-root relative URL path (the <base>
tag href
is set to a path other than /
for staging and production). In the following examples, /relative-URL-path
is the app's path base. For more information, see App base path.
Important
Unlike the path provided to href
of the <base>
tag, don't include a trailing slash (/
) when passing the --pathbase
argument value. If the app base path is provided in the <base>
tag as <base href="/CoolApp/">
(includes a trailing slash), pass the command-line argument value as --pathbase=/CoolApp
(no trailing slash).
Pass the argument when running the app locally at a command prompt. From the app's directory, execute:
dotnet watch --pathbase=/relative-URL-path
Add an entry to the app's launchSettings.json
file in the IIS Express profile. This setting is used when running the app with the Visual Studio Debugger and from a command prompt with dotnet watch
(or dotnet run
).
"commandLineArgs": "--pathbase=/relative-URL-path"
In Visual Studio, specify the argument in Properties > Debug > Application arguments. Setting the argument in the Visual Studio property page adds the argument to the launchSettings.json
file.
--pathbase=/relative-URL-path
The --urls
argument sets the IP addresses or host addresses with ports and protocols to listen on for requests.
Pass the argument when running the app locally at a command prompt. From the app's directory, execute:
dotnet watch --urls=http://127.0.0.1:0
Add an entry to the app's launchSettings.json
file in the IIS Express profile. This setting is used when running the app with the Visual Studio Debugger and from a command prompt with dotnet watch
(or dotnet run
).
"commandLineArgs": "--urls=http://127.0.0.1:0"
In Visual Studio, specify the argument in Properties > Debug > Application arguments. Setting the argument in the Visual Studio property page adds the argument to the launchSettings.json
file.
--urls=http://127.0.0.1:0
Configure the app with ForwardedHeadersOptions to forward the X-Forwarded-For
and X-Forwarded-Proto
headers by following the guidance in Configure ASP.NET Core to work with proxy servers and load balancers.
For more information on setting the app's base path, including sub-app path configuration, see Host and deploy ASP.NET Core Blazor.
Follow the guidance for an ASP.NET Core SignalR app with the following changes:
Remove the configuration for proxy buffering (proxy_buffering off;
) because the setting only applies to Server-Sent Events (SSE), which aren't relevant to Blazor app client-server interactions.
Change the location
path from /hubroute
(location /hubroute { ... }
) to the sub-app path /{PATH}
(location /{PATH} { ... }
), where the {PATH}
placeholder is the sub-app path.
The following example configures the server for an app that responds to requests at the root path /
:
http {
server {
...
location / {
...
}
}
}
The following example configures the sub-app path of /blazor
:
http {
server {
...
location /blazor {
...
}
}
}
For more information and configuration guidance, consult the following resources:
Blazor performs Intermediate Language (IL) trimming on each Release build to remove unnecessary IL from the output assemblies. For more information, see Configure the Trimmer for ASP.NET Core Blazor.
Blazor performs Intermediate Language (IL) linking on each Release build to remove unnecessary IL from the output assemblies. For more information, see Configure the Linker for ASP.NET Core Blazor.
This section applies to ASP.NET Core 6.x and 7.x. In ASP.NET Core in .NET 8 or later, .NET assemblies are deployed as WebAssembly files (.wasm
) using the Webcil file format. In ASP.NET Core in .NET 8 or later, this section only applies if the Webcil file format has been disabled in the app's project file.
If a firewall, anti-virus program, or network security appliance is blocking the transmission of the app's dynamic-link library (DLL) files (.dll
), you can follow the guidance in this section to change the file name extensions of the app's published DLL files.
Note
Changing the file name extensions of the app's DLL files might not resolve the problem because many security systems scan the content of the app's files, not merely check file extensions.
For a more robust approach in environments that block the download and execution of DLL files, use ASP.NET Core in .NET 8 or later, which packages .NET assemblies as WebAssembly files (.wasm
) using the Webcil file format. For more information, see the Webcil packaging format for .NET assemblies section in an 8.0 or later version of this article.
Third-party approaches exist for dealing with this problem. For more information, see the resources at Awesome Blazor.
Note
Changing the file name extensions of the app's DLL files might not resolve the problem because many security systems scan the content of the app's files, not merely check file extensions.
For a more robust approach in environments that block the download and execution of DLL files, take either of the following approaches:
.wasm
) using the Webcil file format. For more information, see the Webcil packaging format for .NET assemblies section in an 8.0 or later version of this article.Third-party approaches exist for dealing with this problem. For more information, see the resources at Awesome Blazor.
After publishing the app, use a shell script or DevOps build pipeline to rename .dll
files to use a different file extension in the directory of the app's published output.
In the following examples:
.dll
files are renamed to use the .bin
file extension from the command line.blazor.boot.json
file with a .dll
file extension are updated to the .bin
file extension..dll
files listed in the service-worker-assets.js
file to the .bin
file extension.To use a different file extension than .bin
, replace .bin
in the following commands with the desired file extension.
On Windows:
dir {PATH} | rename-item -NewName { $_.name -replace ".dll\b",".bin" }
((Get-Content {PATH}\blazor.boot.json -Raw) -replace '.dll"','.bin"') | Set-Content {PATH}\blazor.boot.json
In the preceding command, the {PATH}
placeholder is the path to the published _framework
folder (for example, .\bin\Release\net6.0\browser-wasm\publish\wwwroot\_framework
from the project's root folder).
If service worker assets are also in use:
((Get-Content {PATH}\service-worker-assets.js -Raw) -replace '.dll"','.bin"') | Set-Content {PATH}\service-worker-assets.js
In the preceding command, the {PATH}
placeholder is the path to the published service-worker-assets.js
file.
On Linux or macOS:
for f in {PATH}/*; do mv "$f" "`echo $f | sed -e 's/\.dll/.bin/g'`"; done
sed -i 's/\.dll"/.bin"/g' {PATH}/blazor.boot.json
In the preceding command, the {PATH}
placeholder is the path to the published _framework
folder (for example, .\bin\Release\net6.0\browser-wasm\publish\wwwroot\_framework
from the project's root folder).
If service worker assets are also in use:
sed -i 's/\.dll"/.bin"/g' {PATH}/service-worker-assets.js
In the preceding command, the {PATH}
placeholder is the path to the published service-worker-assets.js
file.
To address the compressed blazor.boot.json.gz
and blazor.boot.json.br
files, adopt either of the following approaches:
blazor.boot.json.gz
and blazor.boot.json.br
files. Compression is disabled with this approach.blazor.boot.json
file.The preceding guidance for the compressed blazor.boot.json
file also applies when service worker assets are in use. Remove or recompress service-worker-assets.js.br
and service-worker-assets.js.gz
. Otherwise, file integrity checks fail in the browser.
The following Windows example for .NET 6 uses a PowerShell script placed at the root of the project. The following script, which disables compression, is the basis for further modification if you wish to recompress the blazor.boot.json
file.
ChangeDLLExtensions.ps1:
:
param([string]$filepath,[string]$tfm)
dir $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework | rename-item -NewName { $_.name -replace ".dll\b",".bin" }
((Get-Content $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\blazor.boot.json -Raw) -replace '.dll"','.bin"') | Set-Content $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\blazor.boot.json
Remove-Item $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\blazor.boot.json.gz
Remove-Item $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\blazor.boot.json.br
If service worker assets are also in use, add the following commands:
((Get-Content $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\service-worker-assets.js -Raw) -replace '.dll"','.bin"') | Set-Content $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\wwwroot\service-worker-assets.js
Remove-Item $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\wwwroot\service-worker-assets.js.gz
Remove-Item $filepath\bin\Release\$tfm\browser-wasm\publish\wwwroot\_framework\wwwroot\service-worker-assets.js.br
In the project file, the script is executed after publishing the app for the Release
configuration:
<Target Name="ChangeDLLFileExtensions" AfterTargets="AfterPublish" Condition="'$(Configuration)'=='Release'">
<Exec Command="powershell.exe -command "& { .\ChangeDLLExtensions.ps1 '$(SolutionDir)' '$(TargetFramework)'}"" />
</Target>
Note
When renaming and lazy loading the same assemblies, see the guidance in Lazy load assemblies in ASP.NET Core Blazor WebAssembly.
Usually, the app's server requires static asset configuration to serve the files with the updated extension. For an app hosted by IIS, add a MIME map entry (<mimeMap>
) for the new file extension in the static content section (<staticContent>
) in a custom web.config
file. The following example assumes that the file extension is changed from .dll
to .bin
:
<staticContent>
...
<mimeMap fileExtension=".bin" mimeType="application/octet-stream" />
...
</staticContent>
Include an update for compressed files if compression is in use:
<mimeMap fileExtension=".bin.br" mimeType="application/octet-stream" />
<mimeMap fileExtension=".bin.gz" mimeType="application/octet-stream" />
Remove the entry for the .dll
file extension:
- <mimeMap fileExtension=".dll" mimeType="application/octet-stream" />
Remove entries for compressed .dll
files if compression is in use:
- <mimeMap fileExtension=".dll.br" mimeType="application/octet-stream" />
- <mimeMap fileExtension=".dll.gz" mimeType="application/octet-stream" />
For more information on custom web.config
files, see the Use a custom web.config
section.
Typically on deployment:
In rare cases, lingering files from a prior deployment can corrupt a new deployment. Completely deleting the existing deployment (or locally-published app prior to deployment) may resolve the issue with a corrupted deployment. Often, deleting the existing deployment once is sufficient to resolve the problem, including for a DevOps build and deploy pipeline.
If you determine that clearing a prior deployment is always required when a DevOps build and deploy pipeline is in use, you can temporarily add a step to the build pipeline to delete the prior deployment for each new deployment until you troubleshoot the exact cause of the corruption.
When Blazor WebAssembly downloads an app's startup files, it instructs the browser to perform integrity checks on the responses. Blazor sends SHA-256 hash values for DLL (.dll
), WebAssembly (.wasm
), and other files in the blazor.boot.json
file, which isn't cached on clients. The file hashes of cached files are compared to the hashes in the blazor.boot.json
file. For cached files with a matching hash, Blazor uses the cached files. Otherwise, files are requested from the server. After a file is downloaded, its hash is checked again for integrity validation. An error is generated by the browser if any downloaded file's integrity check fails.
Blazor's algorithm for managing file integrity:
If the web server returns responses that don't match the expected SHA-256 hashes, an error similar to the following example appears in the browser's developer console:
Failed to find a valid digest in the 'integrity' attribute for resource 'https://myapp.example.com/_framework/MyBlazorApp.dll' with computed SHA-256 integrity 'IIa70iwvmEg5WiDV17OpQ5eCztNYqL186J56852RpJY='. The resource has been blocked.
In most cases, the warning doesn't indicate a problem with integrity checking. Instead, the warning usually means that some other problem exists.
For Blazor WebAssembly's boot reference source, see the Boot.WebAssembly.ts
file in the dotnet/aspnetcore
GitHub repository.
Note
Documentation links to .NET reference source usually load the repository's default branch, which represents the current development for the next release of .NET. To select a tag for a specific release, use the Switch branches or tags dropdown list. For more information, see How to select a version tag of ASP.NET Core source code (dotnet/AspNetCore.Docs #26205).
When an app is built, the generated blazor.boot.json
manifest describes the SHA-256 hashes of boot resources at the time that the build output is produced. The integrity check passes as long as the SHA-256 hashes in blazor.boot.json
match the files delivered to the browser.
Common reasons why this fails include:
.gitattributes
to treat build artifacts as binary
files.blazor.boot.json
file fails to load properly or is improperly cached on the client. Common causes include either of the following:
To diagnose which of these applies in your case:
index.html
data even for other files. Make sure that responses to .wasm
requests are WebAssembly binaries and that responses to .dll
requests are .NET assembly binaries. If not, you have a server-side routing problem to diagnose.If you confirm that the server is returning plausibly correct data, there must be something else modifying the contents in between build and delivery of the file. To investigate this:
content-encoding: br
or content-encoding: gzip
), since this doesn't affect the result after decompression. However, it's not fine for the web server to modify the uncompressed data.Use the integrity.ps1
PowerShell script to validate a published and deployed Blazor app. The script is provided for PowerShell Core 7 or later as a starting point when the app has integrity issues that the Blazor framework can't identify. Customization of the script might be required for your apps, including if running on version of PowerShell later than version 7.2.0.
The script checks the files in the publish
folder and downloaded from the deployed app to detect issues in the different manifests that contain integrity hashes. These checks should detect the most common problems:
Invoke the script with the following command in a PowerShell command shell:
.\integrity.ps1 {BASE URL} {PUBLISH OUTPUT FOLDER}
In the following example, the script is executed on a locally-running app at https://localhost:5001/
:
.\integrity.ps1 https://localhost:5001/ C:\TestApps\BlazorSample\bin\Release\net6.0\publish\
Placeholders:
{BASE URL}
: The URL of the deployed app. A trailing slash (/
) is required.{PUBLISH OUTPUT FOLDER}
: The path to the app's publish
folder or location where the app is published for deployment.Note
When cloning the dotnet/AspNetCore.Docs
GitHub repository, the integrity.ps1
script might be quarantined by Bitdefender or another virus scanner present on the system. Usually, the file is trapped by a virus scanner's heuristic scanning technology, which merely looks for patterns in files that might indicate the presence of malware. To prevent the virus scanner from quarantining the file, add an exception to the virus scanner prior to cloning the repo. The following example is a typical path to the script on a Windows system. Adjust the path as needed for other systems. The {USER}
placeholder is the user's path segment.
C:\Users\{USER}\Documents\GitHub\AspNetCore.Docs\aspnetcore\blazor\host-and-deploy\webassembly\_samples\integrity.ps1
Warning: Creating virus scanner exceptions is dangerous and should only be performed when you're certain that the file is safe.
Comparing the checksum of a file to a valid checksum value doesn't guarantee file safety, but modifying a file in a way that maintains a checksum value isn't trivial for malicious users. Therefore, checksums are useful as a general security approach. Compare the checksum of the local integrity.ps1
file to one of the following values:
32c24cb667d79a701135cb72f6bae490d81703323f61b8af2c7e5e5dc0f0c2bb
9cee7d7ec86ee809a329b5406fbf21a8
Obtain the file's checksum on Windows OS with the following command. Provide the path and file name for the {PATH AND FILE NAME}
placeholder and indicate the type of checksum to produce for the {SHA512|MD5}
placeholder, either SHA256
or MD5
:
CertUtil -hashfile {PATH AND FILE NAME} {SHA256|MD5}
If you have any cause for concern that checksum validation isn't secure enough in your environment, consult your organization's security leadership for guidance.
For more information, see Overview of threat protection by Microsoft Defender Antivirus.
In most cases, don't disable integrity checking. Disabling integrity checking doesn't solve the underlying problem that has caused the unexpected responses and results in losing the benefits listed earlier.
There may be cases where the web server can't be relied upon to return consistent responses, and you have no choice but to temporarily disable integrity checks until the underlying problem is resolved.
To disable integrity checks, add the following to a property group in the Blazor WebAssembly app's project file (.csproj
):
<BlazorCacheBootResources>false</BlazorCacheBootResources>
BlazorCacheBootResources
also disables Blazor's default behavior of caching the .dll
, .wasm
, and other files based on their SHA-256 hashes because the property indicates that the SHA-256 hashes can't be relied upon for correctness. Even with this setting, the browser's normal HTTP cache may still cache those files, but whether or not this happens depends on your web server configuration and the cache-control
headers that it serves.
Note
The BlazorCacheBootResources
property doesn't disable integrity checks for Progressive Web Applications (PWAs). For guidance pertaining to PWAs, see the Disable integrity checking for PWAs section.
We can't provide an exhaustive list of scenarios where disabling integrity checking is required. Servers can answer a request in arbitrary ways outside of the scope of the Blazor framework. The framework provides the BlazorCacheBootResources
setting to make the app runnable at the cost of losing a guarantee of integrity that the app can provide. Again, we don't recommend disabling integrity checking, especially for production deployments. Developers should seek to solve the underlying integrity problem that's causing integrity checking to fail.
A few general cases that can cause integrity issues are:
Blazor's Progressive Web Application (PWA) template contains a suggested service-worker.published.js
file that's responsible for fetching and storing application files for offline use. This is a separate process from the normal app startup mechanism and has its own separate integrity checking logic.
Inside the service-worker.published.js
file, following line is present:
.map(asset => new Request(asset.url, { integrity: asset.hash }));
To disable integrity checking, remove the integrity
parameter by changing the line to the following:
.map(asset => new Request(asset.url));
Again, disabling integrity checking means that you lose the safety guarantees offered by integrity checking. For example, there is a risk that if the user's browser is caching the app at the exact moment that you deploy a new version, it could cache some files from the old deployment and some from the new deployment. If that happens, the app becomes stuck in a broken state until you deploy a further update.
ASP.NET Core feedback
ASP.NET Core is an open source project. Select a link to provide feedback:
Events
Mar 31, 11 PM - Apr 2, 11 PM
The ultimate Microsoft Fabric, Power BI, SQL, and AI community-led event. March 31 to April 2, 2025.
Register todayTraining
Module
Publish a Blazor WebAssembly app and .NET API with Azure Static Web Apps - Training
Publish a Blazor WebAssembly app and .NET API with Azure Static Web Apps