Quickstart: Image Analysis 4.0

Get started with the Image Analysis 4.0 REST API or client SDK to set up a basic image analysis application. The Image Analysis service provides you with AI algorithms for processing images and returning information on their visual features. Follow these steps to install a package to your application and try out the sample code.

Use the Image Analysis client SDK for .NET to read text in an image and generate an image caption. This quickstart analyzes a remote image and prints the results to the console.

Reference documentation | Package (NuGet) | Samples

Tip

The Analysis 4.0 API can do many different operations. See the Analyze Image how-to guide for examples that showcase all of the available features.

Prerequisites

  • The Visual Studio IDE with workload .NET desktop development enabled. Or, if you don't plan on using Visual Studio IDE, you need the .NET SDK installed.
  • Once you have your Azure subscription, create a Computer Vision resource in the Azure portal. In order to use the captioning feature in this quickstart, you must create your resource in one of the supported Azure regions (see Image captions). After it deploys, select Go to resource.
    • You need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service.
    • You can use the free pricing tier (F0) to try the service, and upgrade later to a paid tier for production.

Set up application

Create a new C# application.

Open Visual Studio, and under Get started select Create a new project. Set the template filters to C#/All Platforms/Console. Select Console App (command-line application that can run on .NET on Windows, Linux and macOS) and choose Next. Update the project name to ImageAnalysisQuickstart and choose Next. Select .NET 6.0 or above, and choose Create to create the project.

Install the client SDK

Once you've created a new project, install the client SDK by right-clicking on the project solution in the Solution Explorer and selecting Manage NuGet Packages. In the package manager that opens select Browse, check Include prerelease, and search for Azure.AI.Vision.ImageAnalysis. Select Install.

Create environment variables

In this example, write your credentials to environment variables on the local machine that runs the application.

Go to the Azure portal. If the resource you created in the Prerequisites section deployed successfully, select Go to resource under Next Steps. You can find your key and endpoint under Resource Management in the Keys and Endpoint page. Your resource key isn't the same as your Azure subscription ID.

To set the environment variable for your key and endpoint, open a console window and follow the instructions for your operating system and development environment.

  • To set the VISION_KEY environment variable, replace <your_key> with one of the keys for your resource.
  • To set the VISION_ENDPOINT environment variable, replace <your_endpoint> with the endpoint for your resource.

Important

If you use an API key, store it securely somewhere else, such as in Azure Key Vault. Don't include the API key directly in your code, and never post it publicly.

For more information about AI services security, see Authenticate requests to Azure AI services.

setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>

After you add the environment variables, you may need to restart any running programs that will read the environment variables, including the console window.

Analyze Image

From the project directory, open the Program.cs file that was created previously with your new project. Paste in the following code:

Tip

The code shows analyzing an image URL. You can also analyze a local image file, or an image from a memory buffer. For more information, see the Analyze Image how-to guide.

using Azure;
using Azure.AI.Vision.ImageAnalysis;
using System;

public class Program
{
    static void AnalyzeImage()
    {
        string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
        string key = Environment.GetEnvironmentVariable("VISION_KEY");

        ImageAnalysisClient client = new ImageAnalysisClient(
            new Uri(endpoint),
            new AzureKeyCredential(key));

        ImageAnalysisResult result = client.Analyze(
            new Uri("https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png"),
            VisualFeatures.Caption | VisualFeatures.Read,
            new ImageAnalysisOptions { GenderNeutralCaption = true });

        Console.WriteLine("Image analysis results:");
        Console.WriteLine(" Caption:");
        Console.WriteLine($"   '{result.Caption.Text}', Confidence {result.Caption.Confidence:F4}");

        Console.WriteLine(" Read:");
        foreach (DetectedTextBlock block in result.Read.Blocks)
            foreach (DetectedTextLine line in block.Lines)
            {
                Console.WriteLine($"   Line: '{line.Text}', Bounding Polygon: [{string.Join(" ", line.BoundingPolygon)}]");
                foreach (DetectedTextWord word in line.Words)
                {
                    Console.WriteLine($"     Word: '{word.Text}', Confidence {word.Confidence.ToString("#.####")}, Bounding Polygon: [{string.Join(" ", word.BoundingPolygon)}]");
                }
            }
    }

    static void Main()
    {
        try
        {
            AnalyzeImage();
        }
        catch (Exception e)
        {
            Console.WriteLine(e);
        }
    }
}

Build and run the application by selecting Start Debugging from the Debug menu at the top of the IDE window (or press F5).

Output

The console output should show something similar to the following text:

Caption:
   "a person pointing at a screen", Confidence 0.4892
Text:
   Line: '9:35 AM', Bounding polygon {{X=130,Y=129},{X=215,Y=130},{X=215,Y=149},{X=130,Y=148}}
     Word: '9:35', Bounding polygon {{X=131,Y=130},{X=171,Y=130},{X=171,Y=149},{X=130,Y=149}}, Confidence 0.9930
     Word: 'AM', Bounding polygon {{X=179,Y=130},{X=204,Y=130},{X=203,Y=149},{X=178,Y=149}}, Confidence 0.9980
   Line: 'E Conference room 154584354', Bounding polygon {{X=130,Y=153},{X=224,Y=154},{X=224,Y=161},{X=130,Y=161}}
     Word: 'E', Bounding polygon {{X=131,Y=154},{X=135,Y=154},{X=135,Y=161},{X=131,Y=161}}, Confidence 0.1040
     Word: 'Conference', Bounding polygon {{X=142,Y=154},{X=174,Y=154},{X=173,Y=161},{X=141,Y=161}}, Confidence 0.9020
     Word: 'room', Bounding polygon {{X=175,Y=154},{X=189,Y=155},{X=188,Y=161},{X=175,Y=161}}, Confidence 0.7960
     Word: '154584354', Bounding polygon {{X=192,Y=155},{X=224,Y=154},{X=223,Y=162},{X=191,Y=161}}, Confidence 0.8640
   Line: '#: 555-173-4547', Bounding polygon {{X=130,Y=163},{X=182,Y=164},{X=181,Y=171},{X=130,Y=170}}
     Word: '#:', Bounding polygon {{X=131,Y=163},{X=139,Y=164},{X=139,Y=171},{X=131,Y=171}}, Confidence 0.0360
     Word: '555-173-4547', Bounding polygon {{X=142,Y=164},{X=182,Y=165},{X=181,Y=171},{X=142,Y=171}}, Confidence 0.5970
   Line: 'Town Hall', Bounding polygon {{X=546,Y=180},{X=590,Y=180},{X=590,Y=190},{X=546,Y=190}}
     Word: 'Town', Bounding polygon {{X=547,Y=181},{X=568,Y=181},{X=568,Y=190},{X=546,Y=191}}, Confidence 0.9810
     Word: 'Hall', Bounding polygon {{X=570,Y=181},{X=590,Y=181},{X=590,Y=191},{X=570,Y=190}}, Confidence 0.9910
   Line: '9:00 AM - 10:00 AM', Bounding polygon {{X=546,Y=191},{X=596,Y=192},{X=596,Y=200},{X=546,Y=199}}
     Word: '9:00', Bounding polygon {{X=546,Y=192},{X=555,Y=192},{X=555,Y=200},{X=546,Y=200}}, Confidence 0.0900
     Word: 'AM', Bounding polygon {{X=557,Y=192},{X=565,Y=192},{X=565,Y=200},{X=557,Y=200}}, Confidence 0.9910
     Word: '-', Bounding polygon {{X=567,Y=192},{X=569,Y=192},{X=569,Y=200},{X=567,Y=200}}, Confidence 0.6910
     Word: '10:00', Bounding polygon {{X=570,Y=192},{X=585,Y=193},{X=584,Y=200},{X=570,Y=200}}, Confidence 0.8850
     Word: 'AM', Bounding polygon {{X=586,Y=193},{X=593,Y=194},{X=593,Y=200},{X=586,Y=200}}, Confidence 0.9910
   Line: 'Aaron Buaion', Bounding polygon {{X=543,Y=201},{X=581,Y=201},{X=581,Y=208},{X=543,Y=208}}
     Word: 'Aaron', Bounding polygon {{X=545,Y=202},{X=560,Y=202},{X=559,Y=208},{X=544,Y=208}}, Confidence 0.6020
     Word: 'Buaion', Bounding polygon {{X=561,Y=202},{X=580,Y=202},{X=579,Y=208},{X=560,Y=208}}, Confidence 0.2910        
   Line: 'Daily SCRUM', Bounding polygon {{X=537,Y=259},{X=575,Y=260},{X=575,Y=266},{X=537,Y=265}}
     Word: 'Daily', Bounding polygon {{X=538,Y=259},{X=551,Y=260},{X=550,Y=266},{X=538,Y=265}}, Confidence 0.1750
     Word: 'SCRUM', Bounding polygon {{X=552,Y=260},{X=570,Y=260},{X=570,Y=266},{X=551,Y=266}}, Confidence 0.1140
   Line: '10:00 AM 11:00 AM', Bounding polygon {{X=536,Y=266},{X=590,Y=266},{X=590,Y=272},{X=536,Y=272}}
     Word: '10:00', Bounding polygon {{X=539,Y=267},{X=553,Y=267},{X=552,Y=273},{X=538,Y=272}}, Confidence 0.8570
     Word: 'AM', Bounding polygon {{X=554,Y=267},{X=561,Y=267},{X=560,Y=273},{X=553,Y=273}}, Confidence 0.9980
     Word: '11:00', Bounding polygon {{X=564,Y=267},{X=578,Y=267},{X=577,Y=273},{X=563,Y=273}}, Confidence 0.4790
     Word: 'AM', Bounding polygon {{X=579,Y=267},{X=586,Y=267},{X=585,Y=273},{X=578,Y=273}}, Confidence 0.9940
   Line: 'Churlette de Crum', Bounding polygon {{X=538,Y=273},{X=584,Y=273},{X=585,Y=279},{X=538,Y=279}}
     Word: 'Churlette', Bounding polygon {{X=539,Y=274},{X=562,Y=274},{X=561,Y=279},{X=538,Y=279}}, Confidence 0.4640     
     Word: 'de', Bounding polygon {{X=563,Y=274},{X=569,Y=274},{X=568,Y=279},{X=562,Y=279}}, Confidence 0.8100
     Word: 'Crum', Bounding polygon {{X=570,Y=274},{X=582,Y=273},{X=581,Y=279},{X=569,Y=279}}, Confidence 0.8850
   Line: 'Quarterly NI Hands', Bounding polygon {{X=538,Y=295},{X=588,Y=295},{X=588,Y=301},{X=538,Y=302}}
     Word: 'Quarterly', Bounding polygon {{X=540,Y=296},{X=562,Y=296},{X=562,Y=302},{X=539,Y=302}}, Confidence 0.5230     
     Word: 'NI', Bounding polygon {{X=563,Y=296},{X=570,Y=296},{X=570,Y=302},{X=563,Y=302}}, Confidence 0.3030
     Word: 'Hands', Bounding polygon {{X=572,Y=296},{X=588,Y=296},{X=588,Y=302},{X=571,Y=302}}, Confidence 0.6130
   Line: '11.00 AM-12:00 PM', Bounding polygon {{X=536,Y=304},{X=588,Y=303},{X=588,Y=309},{X=536,Y=310}}
     Word: '11.00', Bounding polygon {{X=538,Y=304},{X=552,Y=304},{X=552,Y=310},{X=538,Y=310}}, Confidence 0.6180
     Word: 'AM-12:00', Bounding polygon {{X=554,Y=304},{X=578,Y=304},{X=577,Y=310},{X=553,Y=310}}, Confidence 0.2700      
     Word: 'PM', Bounding polygon {{X=579,Y=304},{X=586,Y=304},{X=586,Y=309},{X=578,Y=310}}, Confidence 0.6620
   Line: 'Bebek Shaman', Bounding polygon {{X=538,Y=310},{X=577,Y=310},{X=577,Y=316},{X=538,Y=316}}
     Word: 'Bebek', Bounding polygon {{X=539,Y=310},{X=554,Y=310},{X=554,Y=317},{X=539,Y=316}}, Confidence 0.6110
     Word: 'Shaman', Bounding polygon {{X=555,Y=310},{X=576,Y=311},{X=576,Y=317},{X=555,Y=317}}, Confidence 0.6050        
   Line: 'Weekly stand up', Bounding polygon {{X=537,Y=332},{X=582,Y=333},{X=582,Y=339},{X=537,Y=338}}
     Word: 'Weekly', Bounding polygon {{X=538,Y=332},{X=557,Y=333},{X=556,Y=339},{X=538,Y=338}}, Confidence 0.6060        
     Word: 'stand', Bounding polygon {{X=558,Y=333},{X=572,Y=334},{X=571,Y=340},{X=557,Y=339}}, Confidence 0.4890
     Word: 'up', Bounding polygon {{X=574,Y=334},{X=580,Y=334},{X=580,Y=340},{X=573,Y=340}}, Confidence 0.8150
   Line: '12:00 PM-1:00 PM', Bounding polygon {{X=537,Y=340},{X=583,Y=340},{X=583,Y=347},{X=536,Y=346}}
     Word: '12:00', Bounding polygon {{X=539,Y=341},{X=553,Y=341},{X=552,Y=347},{X=538,Y=347}}, Confidence 0.8260
     Word: 'PM-1:00', Bounding polygon {{X=554,Y=341},{X=575,Y=341},{X=574,Y=347},{X=553,Y=347}}, Confidence 0.2090       
     Word: 'PM', Bounding polygon {{X=576,Y=341},{X=583,Y=341},{X=582,Y=347},{X=575,Y=347}}, Confidence 0.0390
   Line: 'Delle Marckre', Bounding polygon {{X=538,Y=347},{X=582,Y=347},{X=582,Y=352},{X=538,Y=353}}
     Word: 'Delle', Bounding polygon {{X=540,Y=348},{X=559,Y=347},{X=558,Y=353},{X=539,Y=353}}, Confidence 0.5800
     Word: 'Marckre', Bounding polygon {{X=560,Y=347},{X=582,Y=348},{X=582,Y=353},{X=559,Y=353}}, Confidence 0.2750       
   Line: 'Product review', Bounding polygon {{X=538,Y=370},{X=577,Y=370},{X=577,Y=376},{X=538,Y=375}}
     Word: 'Product', Bounding polygon {{X=539,Y=370},{X=559,Y=371},{X=558,Y=376},{X=539,Y=376}}, Confidence 0.6150       
     Word: 'review', Bounding polygon {{X=560,Y=371},{X=576,Y=371},{X=575,Y=376},{X=559,Y=376}}, Confidence 0.0400 

Clean up resources

If you want to clean up and remove an Azure AI services subscription, you can delete the resource or resource group. Deleting the resource group also deletes any other resources associated with it.

Next steps

In this quickstart, you learned how to install the Image Analysis client SDK and make basic image analysis calls. Next, learn more about the Analysis 4.0 API features.

Use the Image Analysis client SDK for Python to read text in an image and generate an image caption. This quickstart analyzes a remote image and prints the results to the console.

Reference documentation | Package (PyPi) | Samples

Tip

The Analysis 4.0 API can do many different operations. See the Analyze Image how-to guide for examples that showcase all of the available features.

Prerequisites

  • An Azure subscription - Create one for free
  • Python 3.x. Your Python installation should include pip. You can check if you have pip installed by running pip --version on the command line. Get pip by installing the latest version of Python.
  • Once you have your Azure subscription, create a Computer Vision resource in the Azure portal. In order to use the captioning feature in this quickstart, you must create your resource in one of the supported Azure regions (see Image captions for the list of regions). After it deploys, select Go to resource.
    • You need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service.
    • You can use the free pricing tier (F0) to try the service, and upgrade later to a paid tier for production.

Create environment variables

In this example, write your credentials to environment variables on the local machine that runs the application.

Go to the Azure portal. If the resource you created in the Prerequisites section deployed successfully, select Go to resource under Next Steps. You can find your key and endpoint under Resource Management in the Keys and Endpoint page. Your resource key isn't the same as your Azure subscription ID.

To set the environment variable for your key and endpoint, open a console window and follow the instructions for your operating system and development environment.

  • To set the VISION_KEY environment variable, replace <your_key> with one of the keys for your resource.
  • To set the VISION_ENDPOINT environment variable, replace <your_endpoint> with the endpoint for your resource.

Important

If you use an API key, store it securely somewhere else, such as in Azure Key Vault. Don't include the API key directly in your code, and never post it publicly.

For more information about AI services security, see Authenticate requests to Azure AI services.

setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>

After you add the environment variables, you may need to restart any running programs that will read the environment variables, including the console window.

Analyze image

  1. Open a command prompt where you want the new project, and create a new file named quickstart.py.

  2. Run this command to install the Image Analysis SDK:

    pip install azure-ai-vision-imageanalysis
    
  3. Copy the following code into quickstart.py:

    Tip

    The code shows analyzing an image URL. You can also analyze an image from the program memory buffer. For more information, see the Analyze Image how-to guide.

    import os
    from azure.ai.vision.imageanalysis import ImageAnalysisClient
    from azure.ai.vision.imageanalysis.models import VisualFeatures
    from azure.core.credentials import AzureKeyCredential
    
    # Set the values of your computer vision endpoint and computer vision key
    # as environment variables:
    try:
        endpoint = os.environ["VISION_ENDPOINT"]
        key = os.environ["VISION_KEY"]
    except KeyError:
        print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'")
        print("Set them before running this sample.")
        exit()
    
    # Create an Image Analysis client
    client = ImageAnalysisClient(
        endpoint=endpoint,
        credential=AzureKeyCredential(key)
    )
    
    # Get a caption for the image. This will be a synchronously (blocking) call.
    result = client.analyze_from_url(
        image_url="https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
        visual_features=[VisualFeatures.CAPTION, VisualFeatures.READ],
        gender_neutral_caption=True,  # Optional (default is False)
    )
    
    print("Image analysis results:")
    # Print caption results to the console
    print(" Caption:")
    if result.caption is not None:
        print(f"   '{result.caption.text}', Confidence {result.caption.confidence:.4f}")
    
    # Print text (OCR) analysis results to the console
    print(" Read:")
    if result.read is not None:
        for line in result.read.blocks[0].lines:
            print(f"   Line: '{line.text}', Bounding box {line.bounding_polygon}")
            for word in line.words:
                print(f"     Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}")
    
  4. Then run the application with the python command on your quickstart file.

    python quickstart.py
    

Output

The console output should show something similar to the following text:

Caption:
   'a person pointing at a screen', Confidence 0.4892
Text:
   Line: '9:35 AM', Bounding polygon {130, 129, 215, 130, 215, 149, 130, 148}
     Word: '9:35', Bounding polygon {131, 130, 171, 130, 171, 149, 130, 149}, Confidence 0.9930
     Word: 'AM', Bounding polygon {179, 130, 204, 130, 203, 149, 178, 149}, Confidence 0.9980
   Line: 'E Conference room 154584354', Bounding polygon {130, 153, 224, 154, 224, 161, 130, 161}
     Word: 'E', Bounding polygon {131, 154, 135, 154, 135, 161, 131, 161}, Confidence 0.1040
     Word: 'Conference', Bounding polygon {142, 154, 174, 154, 173, 161, 141, 161}, Confidence 0.9020
     Word: 'room', Bounding polygon {175, 154, 189, 155, 188, 161, 175, 161}, Confidence 0.7960
     Word: '154584354', Bounding polygon {192, 155, 224, 154, 223, 162, 191, 161}, Confidence 0.8640
   Line: '#: 555-173-4547', Bounding polygon {130, 163, 182, 164, 181, 171, 130, 170}
     Word: '#:', Bounding polygon {131, 163, 139, 164, 139, 171, 131, 171}, Confidence 0.0360
     Word: '555-173-4547', Bounding polygon {142, 164, 182, 165, 181, 171, 142, 171}, Confidence 0.5970
   Line: 'Town Hall', Bounding polygon {546, 180, 590, 180, 590, 190, 546, 190}
     Word: 'Town', Bounding polygon {547, 181, 568, 181, 568, 190, 546, 191}, Confidence 0.9810
     Word: 'Hall', Bounding polygon {570, 181, 590, 181, 590, 191, 570, 190}, Confidence 0.9910
   Line: '9:00 AM - 10:00 AM', Bounding polygon {546, 191, 596, 192, 596, 200, 546, 199}
     Word: '9:00', Bounding polygon {546, 192, 555, 192, 555, 200, 546, 200}, Confidence 0.0900
     Word: 'AM', Bounding polygon {557, 192, 565, 192, 565, 200, 557, 200}, Confidence 0.9910
     Word: '-', Bounding polygon {567, 192, 569, 192, 569, 200, 567, 200}, Confidence 0.6910
     Word: '10:00', Bounding polygon {570, 192, 585, 193, 584, 200, 570, 200}, Confidence 0.8850
     Word: 'AM', Bounding polygon {586, 193, 593, 194, 593, 200, 586, 200}, Confidence 0.9910
   Line: 'Aaron Buaion', Bounding polygon {543, 201, 581, 201, 581, 208, 543, 208}
     Word: 'Aaron', Bounding polygon {545, 202, 560, 202, 559, 208, 544, 208}, Confidence 0.6020
     Word: 'Buaion', Bounding polygon {561, 202, 580, 202, 579, 208, 560, 208}, Confidence 0.2910
   Line: 'Daily SCRUM', Bounding polygon {537, 259, 575, 260, 575, 266, 537, 265}
     Word: 'Daily', Bounding polygon {538, 259, 551, 260, 550, 266, 538, 265}, Confidence 0.1750
     Word: 'SCRUM', Bounding polygon {552, 260, 570, 260, 570, 266, 551, 266}, Confidence 0.1140
   Line: '10:00 AM 11:00 AM', Bounding polygon {536, 266, 590, 266, 590, 272, 536, 272}
     Word: '10:00', Bounding polygon {539, 267, 553, 267, 552, 273, 538, 272}, Confidence 0.8570
     Word: 'AM', Bounding polygon {554, 267, 561, 267, 560, 273, 553, 273}, Confidence 0.9980
     Word: '11:00', Bounding polygon {564, 267, 578, 267, 577, 273, 563, 273}, Confidence 0.4790
     Word: 'AM', Bounding polygon {579, 267, 586, 267, 585, 273, 578, 273}, Confidence 0.9940
   Line: 'Churlette de Crum', Bounding polygon {538, 273, 584, 273, 585, 279, 538, 279}
     Word: 'Churlette', Bounding polygon {539, 274, 562, 274, 561, 279, 538, 279}, Confidence 0.4640
     Word: 'de', Bounding polygon {563, 274, 569, 274, 568, 279, 562, 279}, Confidence 0.8100
     Word: 'Crum', Bounding polygon {570, 274, 582, 273, 581, 279, 569, 279}, Confidence 0.8850
   Line: 'Quarterly NI Hands', Bounding polygon {538, 295, 588, 295, 588, 301, 538, 302}
     Word: 'Quarterly', Bounding polygon {540, 296, 562, 296, 562, 302, 539, 302}, Confidence 0.5230
     Word: 'NI', Bounding polygon {563, 296, 570, 296, 570, 302, 563, 302}, Confidence 0.3030
     Word: 'Hands', Bounding polygon {572, 296, 588, 296, 588, 302, 571, 302}, Confidence 0.6130
   Line: '11.00 AM-12:00 PM', Bounding polygon {536, 304, 588, 303, 588, 309, 536, 310}
     Word: '11.00', Bounding polygon {538, 304, 552, 304, 552, 310, 538, 310}, Confidence 0.6180
     Word: 'AM-12:00', Bounding polygon {554, 304, 578, 304, 577, 310, 553, 310}, Confidence 0.2700
     Word: 'PM', Bounding polygon {579, 304, 586, 304, 586, 309, 578, 310}, Confidence 0.6620
   Line: 'Bebek Shaman', Bounding polygon {538, 310, 577, 310, 577, 316, 538, 316}
     Word: 'Bebek', Bounding polygon {539, 310, 554, 310, 554, 317, 539, 316}, Confidence 0.6110
     Word: 'Shaman', Bounding polygon {555, 310, 576, 311, 576, 317, 555, 317}, Confidence 0.6050
   Line: 'Weekly stand up', Bounding polygon {537, 332, 582, 333, 582, 339, 537, 338}
     Word: 'Weekly', Bounding polygon {538, 332, 557, 333, 556, 339, 538, 338}, Confidence 0.6060
     Word: 'stand', Bounding polygon {558, 333, 572, 334, 571, 340, 557, 339}, Confidence 0.4890
     Word: 'up', Bounding polygon {574, 334, 580, 334, 580, 340, 573, 340}, Confidence 0.8150
   Line: '12:00 PM-1:00 PM', Bounding polygon {537, 340, 583, 340, 583, 347, 536, 346}
     Word: '12:00', Bounding polygon {539, 341, 553, 341, 552, 347, 538, 347}, Confidence 0.8260
     Word: 'PM-1:00', Bounding polygon {554, 341, 575, 341, 574, 347, 553, 347}, Confidence 0.2090
     Word: 'PM', Bounding polygon {576, 341, 583, 341, 582, 347, 575, 347}, Confidence 0.0390
   Line: 'Delle Marckre', Bounding polygon {538, 347, 582, 347, 582, 352, 538, 353}
     Word: 'Delle', Bounding polygon {540, 348, 559, 347, 558, 353, 539, 353}, Confidence 0.5800
     Word: 'Marckre', Bounding polygon {560, 347, 582, 348, 582, 353, 559, 353}, Confidence 0.2750
   Line: 'Product review', Bounding polygon {538, 370, 577, 370, 577, 376, 538, 375}
     Word: 'Product', Bounding polygon {539, 370, 559, 371, 558, 376, 539, 376}, Confidence 0.6150
     Word: 'review', Bounding polygon {560, 371, 576, 371, 575, 376, 559, 376}, Confidence 0.0400

Clean up resources

If you want to clean up and remove an Azure AI services subscription, you can delete the resource or resource group. Deleting the resource group also deletes any other resources associated with it.

Next steps

In this quickstart, you learned how to install the Image Analysis client SDK and make basic image analysis calls. Next, learn more about the Analysis 4.0 API features.

Use the Image Analysis client SDK for Java to read text in an image and generate an image caption. This quickstart analyzes a remote image and prints the results to the console.

Reference documentation | Maven Package | Samples

Tip

The Analysis 4.0 API can do many different operations. See the Analyze Image how-to guide for examples that showcase all of the available features.

Prerequisites

  • A Windows 10 (or higher) x64, or Linux x64 machine.
  • Java Development Kit (JDK) version 8 or above installed, such as Azul Zulu OpenJDK, Microsoft Build of OpenJDK, Oracle Java, or your preferred JDK. Run java -version from a command line to see your version and confirm a successful installation. Make sure that the Java installation is native to the system architecture and not running through emulation.
  • Apache Maven installed. On Linux, install from the distribution repositories if available. Run mvn -v to confirm successful installation.
  • An Azure subscription - Create one for free
  • Once you have your Azure subscription, create a Computer Vision resource in the Azure portal. In order to use the captioning feature in this quickstart, you must create your resource in one of the supported Azure regions (see Image captions). After it deploys, select Go to resource.
    • You need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service.
    • You can use the free pricing tier (F0) to try the service, and upgrade later to a paid tier for production.

Set up application

Open a console window and create a new folder for your quickstart application.

  1. Open a text editor and copy the following content to a new file. Save the file as pom.xml in your project directory

    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
      <groupId>com.example</groupId>
      <artifactId>my-application-name</artifactId>
      <version>1.0.0</version>
      <dependencies>
        <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-imageanalysis -->
        <dependency>
          <groupId>com.azure</groupId>
          <artifactId>azure-ai-vision-imageanalysis</artifactId>
          <version>1.0.0-beta.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop -->
        <dependency>
          <groupId>org.slf4j</groupId>
          <artifactId>slf4j-nop</artifactId>
          <version>1.7.36</version>
        </dependency>
      </dependencies>
    </project>
    
  2. Update the version value (1.0.0-beta.2) based on the latest available version of the azure-ai-vision-imageanalysis package in the Maven repository.

  3. Install the SDK and dependencies by running the following in the project directory:

    mvn clean dependency:copy-dependencies
    
  4. Once the operation succeeds, verify that the folders target\dependency were creating and they contain .jar files.

Create environment variables

In this example, write your credentials to environment variables on the local machine that runs the application.

Go to the Azure portal. If the resource you created in the Prerequisites section deployed successfully, select Go to resource under Next Steps. You can find your key and endpoint under Resource Management in the Keys and Endpoint page. Your resource key isn't the same as your Azure subscription ID.

To set the environment variable for your key and endpoint, open a console window and follow the instructions for your operating system and development environment.

  • To set the VISION_KEY environment variable, replace <your_key> with one of the keys for your resource.
  • To set the VISION_ENDPOINT environment variable, replace <your_endpoint> with the endpoint for your resource.

Important

If you use an API key, store it securely somewhere else, such as in Azure Key Vault. Don't include the API key directly in your code, and never post it publicly.

For more information about AI services security, see Authenticate requests to Azure AI services.

setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>

After you add the environment variables, you may need to restart any running programs that will read the environment variables, including the console window.

Analyze Image

Open a text editor and copy the following content to a new file. Save the file as ImageAnalysis.java

import com.azure.ai.vision.imageanalysis.*;
import com.azure.ai.vision.imageanalysis.models.*;
import com.azure.core.credential.KeyCredential;
import java.util.Arrays;

public class ImageAnalysisQuickStart {

    public static void main(String[] args) {

        String endpoint = System.getenv("VISION_ENDPOINT");
        String key = System.getenv("VISION_KEY");

        if (endpoint == null || key == null) {
            System.out.println("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'.");
            System.out.println("Set them before running this sample.");
            System.exit(1);
        }

        // Create a synchronous Image Analysis client.
        ImageAnalysisClient client = new ImageAnalysisClientBuilder()
            .endpoint(endpoint)
            .credential(new KeyCredential(key))
            .buildClient();

        // This is a synchronous (blocking) call.
        ImageAnalysisResult result = client.analyzeFromUrl(
            "https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
            Arrays.asList(VisualFeatures.CAPTION, VisualFeatures.READ),
            new ImageAnalysisOptions().setGenderNeutralCaption(true));

        // Print analysis results to the console
        System.out.println("Image analysis results:");
        System.out.println(" Caption:");
        System.out.println("   \"" + result.getCaption().getText() + "\", Confidence "
            + String.format("%.4f", result.getCaption().getConfidence()));
        System.out.println(" Read:");
        for (DetectedTextLine line : result.getRead().getBlocks().get(0).getLines()) {
            System.out.println("   Line: '" + line.getText()
                + "', Bounding polygon " + line.getBoundingPolygon());
            for (DetectedTextWord word : line.getWords()) {
                System.out.println("     Word: '" + word.getText()
                    + "', Bounding polygon " + word.getBoundingPolygon()
                    + ", Confidence " + String.format("%.4f", word.getConfidence()));
            }
        }
    }
}

Tip

The code analyzes an image from a URL. You can also analyze an image from the program memory buffer. For more information, see the Analyze Image how-to guide.

To compile the Java file, run the following command:

javac ImageAnalysis.java -cp ".;target/dependency/*"

You should see the file ImageAnalysis.class created in the current folder.

To run the application, run the following command:

java -cp ".;target/dependency/*" ImageAnalysis

Output

The console output should show something similar to the following text:

Image analysis results:
 Caption:
   "a person pointing at a screen", Confidence 0.7768
 Read:
   Line: '9:35 AM', Bounding polygon [(x=131, y=130), (x=214, y=130), (x=214, y=148), (x=131, y=148)]
     Word: '9:35', Bounding polygon [(x=132, y=130), (x=172, y=131), (x=171, y=149), (x=131, y=148)], Confidence 0.9770
     Word: 'AM', Bounding polygon [(x=180, y=131), (x=203, y=131), (x=202, y=149), (x=180, y=149)], Confidence 0.9980
   Line: 'Conference room 154584354', Bounding polygon [(x=132, y=153), (x=224, y=153), (x=224, y=161), (x=132, y=160)]
     Word: 'Conference', Bounding polygon [(x=143, y=153), (x=174, y=154), (x=174, y=161), (x=143, y=161)], Confidence 0.6930
     Word: 'room', Bounding polygon [(x=176, y=154), (x=188, y=154), (x=188, y=161), (x=176, y=161)], Confidence 0.9590
     Word: '154584354', Bounding polygon [(x=192, y=154), (x=224, y=154), (x=223, y=161), (x=192, y=161)], Confidence 0.7050
   Line: ': 555-123-4567', Bounding polygon [(x=133, y=164), (x=183, y=164), (x=183, y=170), (x=133, y=170)]
     Word: ':', Bounding polygon [(x=134, y=165), (x=137, y=165), (x=136, y=171), (x=133, y=171)], Confidence 0.1620
     Word: '555-123-4567', Bounding polygon [(x=143, y=165), (x=182, y=165), (x=181, y=171), (x=143, y=171)], Confidence 0.6530
   Line: 'Town Hall', Bounding polygon [(x=545, y=178), (x=588, y=179), (x=588, y=190), (x=545, y=190)]
     Word: 'Town', Bounding polygon [(x=545, y=179), (x=569, y=180), (x=569, y=190), (x=545, y=190)], Confidence 0.9880
     Word: 'Hall', Bounding polygon [(x=571, y=180), (x=589, y=180), (x=589, y=190), (x=571, y=190)], Confidence 0.9900
   Line: '9:00 AM - 10:00 AM', Bounding polygon [(x=545, y=191), (x=596, y=191), (x=596, y=199), (x=545, y=198)]
     Word: '9:00', Bounding polygon [(x=546, y=191), (x=556, y=192), (x=556, y=199), (x=546, y=199)], Confidence 0.7580
     Word: 'AM', Bounding polygon [(x=558, y=192), (x=565, y=192), (x=564, y=199), (x=558, y=199)], Confidence 0.9890
     Word: '-', Bounding polygon [(x=567, y=192), (x=570, y=192), (x=569, y=199), (x=567, y=199)], Confidence 0.8960
     Word: '10:00', Bounding polygon [(x=571, y=192), (x=585, y=192), (x=585, y=199), (x=571, y=199)], Confidence 0.7970
     Word: 'AM', Bounding polygon [(x=587, y=192), (x=594, y=193), (x=593, y=199), (x=586, y=199)], Confidence 0.9940
   Line: 'Aaron Blaion', Bounding polygon [(x=542, y=201), (x=581, y=201), (x=581, y=207), (x=542, y=207)]
     Word: 'Aaron', Bounding polygon [(x=545, y=201), (x=560, y=202), (x=560, y=208), (x=545, y=208)], Confidence 0.7180
     Word: 'Blaion', Bounding polygon [(x=562, y=202), (x=579, y=202), (x=579, y=207), (x=562, y=207)], Confidence 0.2740
   Line: 'Daily SCRUM', Bounding polygon [(x=537, y=258), (x=574, y=259), (x=574, y=266), (x=537, y=265)]
     Word: 'Daily', Bounding polygon [(x=538, y=259), (x=551, y=259), (x=551, y=266), (x=538, y=265)], Confidence 0.4040
     Word: 'SCRUM', Bounding polygon [(x=553, y=259), (x=570, y=260), (x=570, y=265), (x=553, y=266)], Confidence 0.6970
   Line: '10:00 AM-11:00 AM', Bounding polygon [(x=535, y=266), (x=589, y=265), (x=589, y=272), (x=535, y=273)]
     Word: '10:00', Bounding polygon [(x=539, y=267), (x=553, y=266), (x=552, y=273), (x=539, y=274)], Confidence 0.2190
     Word: 'AM-11:00', Bounding polygon [(x=554, y=266), (x=578, y=266), (x=578, y=272), (x=554, y=273)], Confidence 0.1750
     Word: 'AM', Bounding polygon [(x=580, y=266), (x=587, y=266), (x=586, y=272), (x=580, y=272)], Confidence 1.0000
   Line: 'Charlene de Crum', Bounding polygon [(x=538, y=272), (x=588, y=273), (x=588, y=279), (x=538, y=279)]
     Word: 'Charlene', Bounding polygon [(x=538, y=273), (x=562, y=273), (x=562, y=280), (x=538, y=280)], Confidence 0.3220
     Word: 'de', Bounding polygon [(x=563, y=273), (x=569, y=273), (x=569, y=280), (x=563, y=280)], Confidence 0.9100
     Word: 'Crum', Bounding polygon [(x=570, y=273), (x=582, y=273), (x=583, y=280), (x=571, y=280)], Confidence 0.8710
   Line: 'Quarterly NI Handa', Bounding polygon [(x=537, y=295), (x=588, y=295), (x=588, y=302), (x=537, y=302)]
     Word: 'Quarterly', Bounding polygon [(x=539, y=296), (x=563, y=296), (x=563, y=302), (x=538, y=302)], Confidence 0.6030
     Word: 'NI', Bounding polygon [(x=564, y=296), (x=570, y=296), (x=571, y=302), (x=564, y=302)], Confidence 0.7300
     Word: 'Handa', Bounding polygon [(x=572, y=296), (x=588, y=296), (x=588, y=302), (x=572, y=302)], Confidence 0.9050
   Line: '11.00 AM-12:00 PM', Bounding polygon [(x=538, y=303), (x=587, y=303), (x=587, y=309), (x=538, y=309)]
     Word: '11.00', Bounding polygon [(x=539, y=303), (x=552, y=303), (x=553, y=309), (x=539, y=310)], Confidence 0.6710
     Word: 'AM-12:00', Bounding polygon [(x=554, y=303), (x=578, y=303), (x=578, y=309), (x=554, y=309)], Confidence 0.6560
     Word: 'PM', Bounding polygon [(x=579, y=303), (x=586, y=303), (x=586, y=309), (x=580, y=309)], Confidence 0.4540
   Line: 'Bobek Shemar', Bounding polygon [(x=538, y=310), (x=577, y=310), (x=577, y=316), (x=538, y=316)]
     Word: 'Bobek', Bounding polygon [(x=539, y=310), (x=554, y=311), (x=554, y=317), (x=539, y=317)], Confidence 0.6320
     Word: 'Shemar', Bounding polygon [(x=556, y=311), (x=576, y=311), (x=577, y=317), (x=556, y=317)], Confidence 0.2190
   Line: 'Weekly aband up', Bounding polygon [(x=538, y=332), (x=583, y=333), (x=583, y=339), (x=538, y=338)]
     Word: 'Weekly', Bounding polygon [(x=539, y=333), (x=557, y=333), (x=557, y=339), (x=539, y=339)], Confidence 0.5750
     Word: 'aband', Bounding polygon [(x=558, y=334), (x=573, y=334), (x=573, y=339), (x=558, y=339)], Confidence 0.4750
     Word: 'up', Bounding polygon [(x=574, y=334), (x=580, y=334), (x=580, y=339), (x=574, y=339)], Confidence 0.8650
   Line: '12:00 PM-1:00 PM', Bounding polygon [(x=538, y=339), (x=585, y=339), (x=585, y=346), (x=538, y=346)]
     Word: '12:00', Bounding polygon [(x=539, y=339), (x=553, y=340), (x=553, y=347), (x=539, y=346)], Confidence 0.7090
     Word: 'PM-1:00', Bounding polygon [(x=554, y=340), (x=575, y=340), (x=575, y=346), (x=554, y=347)], Confidence 0.9080
     Word: 'PM', Bounding polygon [(x=576, y=340), (x=583, y=340), (x=583, y=346), (x=576, y=346)], Confidence 0.9980
   Line: 'Danielle MarchTe', Bounding polygon [(x=538, y=346), (x=583, y=346), (x=583, y=352), (x=538, y=352)]
     Word: 'Danielle', Bounding polygon [(x=539, y=347), (x=559, y=347), (x=559, y=352), (x=539, y=353)], Confidence 0.1960
     Word: 'MarchTe', Bounding polygon [(x=560, y=347), (x=582, y=347), (x=582, y=352), (x=560, y=352)], Confidence 0.5710
   Line: 'Product reviret', Bounding polygon [(x=537, y=370), (x=578, y=370), (x=578, y=375), (x=537, y=375)]
     Word: 'Product', Bounding polygon [(x=539, y=370), (x=559, y=370), (x=559, y=376), (x=539, y=375)], Confidence 0.7000
     Word: 'reviret', Bounding polygon [(x=560, y=370), (x=578, y=371), (x=578, y=375), (x=560, y=376)], Confidence 0.2180

Clean up resources

If you want to clean up and remove an Azure AI services subscription, you can delete the resource or resource group. Deleting the resource group also deletes any other resources associated with it.

Next steps

In this quickstart, you learned how to install the Image Analysis client SDK and make basic image analysis calls. Next, learn more about the Analysis 4.0 API features.

Use the Image Analysis client SDK for JavaScript to read text in an image and generate an image caption. This quickstart analyzes a remote image and prints the results to the console.

Reference documentation | Package (npm) | Samples

Tip

The Analysis 4.0 API can do many different operations. See the Analyze Image how-to guide for examples that showcase all of the available features.

Prerequisites

  • An Azure subscription - Create one for free
  • The current version of Node.js
  • The current version of Edge, Chrome, Firefox, or Safari internet browser.
  • Once you have your Azure subscription, create a Computer Vision resource in the Azure portal to get your key and endpoint. In order to use the captioning feature in this quickstart, you must create your resource in one of the supported Azure regions (see Image captions for the list of regions). After it deploys, select Go to resource.
    • You need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service.
    • You can use the free pricing tier (F0) to try the service, and upgrade later to a paid tier for production.

Create environment variables

In this example, write your credentials to environment variables on the local machine that runs the application.

Go to the Azure portal. If the resource you created in the Prerequisites section deployed successfully, select Go to resource under Next Steps. You can find your key and endpoint under Resource Management in the Keys and Endpoint page. Your resource key isn't the same as your Azure subscription ID.

To set the environment variable for your key and endpoint, open a console window and follow the instructions for your operating system and development environment.

  • To set the VISION_KEY environment variable, replace <your_key> with one of the keys for your resource.
  • To set the VISION_ENDPOINT environment variable, replace <your_endpoint> with the endpoint for your resource.

Important

If you use an API key, store it securely somewhere else, such as in Azure Key Vault. Don't include the API key directly in your code, and never post it publicly.

For more information about AI services security, see Authenticate requests to Azure AI services.

setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>

After you add the environment variables, you may need to restart any running programs that will read the environment variables, including the console window.

Analyze image

  1. Create a new Node.js application

    In a console window (such as cmd, PowerShell, or Bash), create a new directory for your app, and navigate to it.

    mkdir myapp && cd myapp
    

    Run the npm init command to create a node application with a package.json file.

    npm init
    
  2. Install the client library

    Install @azure-rest/ai-vision-image-analysis npm package:

    npm install @azure-rest/ai-vision-image-analysis
    

    Also install the dotenv package:

    npm install dotenv
    

    Your app's package.json file will be updated with the dependencies.

  3. Create a new file, index.js. Open it in a text editor and paste in the following code.

    const { ImageAnalysisClient } = require('@azure-rest/ai-vision-image-analysis');
    const createClient = require('@azure-rest/ai-vision-image-analysis').default;
    const { AzureKeyCredential } = require('@azure/core-auth');
    
    // Load the .env file if it exists
    require("dotenv").config();
    
    const endpoint = process.env['VISION_ENDPOINT'];
    const key = process.env['VISION_KEY'];
    
    const credential = new AzureKeyCredential(key);
    const client = createClient(endpoint, credential);
    
    const features = [
      'Caption',
      'Read'
    ];
    
    const imageUrl = 'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png';
    
    async function analyzeImageFromUrl() {
      const result = await client.path('/imageanalysis:analyze').post({
        body: {
            url: imageUrl
        },
        queryParameters: {
            features: features
        },
        contentType: 'application/json'
      });
    
      const iaResult = result.body;
    
      if (iaResult.captionResult) {
        console.log(`Caption: ${iaResult.captionResult.text} (confidence: ${iaResult.captionResult.confidence})`);
      }
      if (iaResult.readResult) {
        iaResult.readResult.blocks.forEach(block => console.log(`Text Block: ${JSON.stringify(block)}`));
      }
    }
    
    analyzeImageFromUrl();
    
  4. Run the application with the node command on your quickstart file.

    node index.js
    

Clean up resources

If you want to clean up and remove an Azure AI services subscription, you can delete the resource or resource group. Deleting the resource group also deletes any other resources associated with it.

Next steps

In this quickstart, you learned how to install the Image Analysis client library and make basic image analysis calls. Next, learn more about the Analyze API features.

Use the Image Analysis REST API to read text and generate captions for the image (version 4.0 only).

Tip

The Analysis 4.0 API can do many different operations. See the Analyze Image how-to guide for examples that showcase all of the available features.

Prerequisites

  • An Azure subscription - Create one for free
  • Once you have your Azure subscription, create a Computer Vision resource in the Azure portal to get your key and endpoint. In order to use the captioning feature in this quickstart, you must create your resource in certain Azure regions. See Region availability. After it deploys, select Go to resource.
    • You'll need the key and endpoint from the resource you create to connect your application to the Azure AI Vision service. You'll paste your key and endpoint into the code below later in the quickstart.
    • You can use the free pricing tier (F0) to try the service, and upgrade later to a paid tier for production.
  • cURL installed

Analyze an image

To analyze an image for various visual features, do the following steps:

  1. Copy the following curl command into a text editor.

    curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "<endpoint>/computervision/imageanalysis:analyze?features=caption,read&model-version=latest&language=en&api-version=2024-02-01" -d "{'url':'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png'}"
    
  2. Make the following changes in the command where needed:

    1. Replace the value of <subscriptionKey> with your Vision resource key.
    2. Replace the value of <endpoint> with your Vision resource endpoint URL. For example: https://YourResourceName.cognitiveservices.azure.com.
    3. Optionally, change the image URL in the request body (https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png) to the URL of a different image to be analyzed.
  3. Open a command prompt window.

  4. Paste your edited curl command from the text editor into the command prompt window, and then run the command.

Examine the response

A successful response is returned in JSON, similar to the following example:

{
    "modelVersion": "2024-02-01",
    "captionResult":
    {
        "text": "a man pointing at a screen",
        "confidence": 0.7767987847328186
    },
    "metadata":
    {
        "width": 1038,
        "height": 692
    },
    "readResult":
    {
        "blocks":
        [
            {
                "lines":
                [
                    {
                        "text": "9:35 AM",
                        "boundingPolygon": [{"x":131,"y":130},{"x":214,"y":130},{"x":214,"y":148},{"x":131,"y":148}],
                        "words": [{"text":"9:35","boundingPolygon":[{"x":132,"y":130},{"x":172,"y":131},{"x":171,"y":149},{"x":131,"y":148}],"confidence":0.977},{"text":"AM","boundingPolygon":[{"x":180,"y":131},{"x":203,"y":131},{"x":202,"y":149},{"x":180,"y":149}],"confidence":0.998}]
                    },
                    {
                        "text": "Conference room 154584354",
                        "boundingPolygon": [{"x":132,"y":153},{"x":224,"y":153},{"x":224,"y":161},{"x":132,"y":160}],
                        "words": [{"text":"Conference","boundingPolygon":[{"x":143,"y":153},{"x":174,"y":154},{"x":174,"y":161},{"x":143,"y":161}],"confidence":0.693},{"text":"room","boundingPolygon":[{"x":176,"y":154},{"x":188,"y":154},{"x":188,"y":161},{"x":176,"y":161}],"confidence":0.959},{"text":"154584354","boundingPolygon":[{"x":192,"y":154},{"x":224,"y":154},{"x":223,"y":161},{"x":192,"y":161}],"confidence":0.705}]
                    },
                    {
                        "text": ": 555-123-4567",
                        "boundingPolygon": [{"x":133,"y":164},{"x":183,"y":164},{"x":183,"y":170},{"x":133,"y":170}],
                        "words": [{"text":":","boundingPolygon":[{"x":134,"y":165},{"x":137,"y":165},{"x":136,"y":171},{"x":133,"y":171}],"confidence":0.162},{"text":"555-123-4567","boundingPolygon":[{"x":143,"y":165},{"x":182,"y":165},{"x":181,"y":171},{"x":143,"y":171}],"confidence":0.653}]
                    },
                    {
                        "text": "Town Hall",
                        "boundingPolygon": [{"x":545,"y":178},{"x":588,"y":179},{"x":588,"y":190},{"x":545,"y":190}],
                        "words": [{"text":"Town","boundingPolygon":[{"x":545,"y":179},{"x":569,"y":180},{"x":569,"y":190},{"x":545,"y":190}],"confidence":0.988},{"text":"Hall","boundingPolygon":[{"x":571,"y":180},{"x":589,"y":180},{"x":589,"y":190},{"x":571,"y":190}],"confidence":0.99}]
                    },
                    {
                        "text": "9:00 AM - 10:00 AM",
                        "boundingPolygon": [{"x":545,"y":191},{"x":596,"y":191},{"x":596,"y":199},{"x":545,"y":198}],
                        "words": [{"text":"9:00","boundingPolygon":[{"x":546,"y":191},{"x":556,"y":192},{"x":556,"y":199},{"x":546,"y":199}],"confidence":0.758},{"text":"AM","boundingPolygon":[{"x":558,"y":192},{"x":565,"y":192},{"x":564,"y":199},{"x":558,"y":199}],"confidence":0.989},{"text":"-","boundingPolygon":[{"x":567,"y":192},{"x":570,"y":192},{"x":569,"y":199},{"x":567,"y":199}],"confidence":0.896},{"text":"10:00","boundingPolygon":[{"x":571,"y":192},{"x":585,"y":192},{"x":585,"y":199},{"x":571,"y":199}],"confidence":0.797},{"text":"AM","boundingPolygon":[{"x":587,"y":192},{"x":594,"y":193},{"x":593,"y":199},{"x":586,"y":199}],"confidence":0.994}]
                    },
                    {
                        "text": "Aaron Blaion",
                        "boundingPolygon": [{"x":542,"y":201},{"x":581,"y":201},{"x":581,"y":207},{"x":542,"y":207}],
                        "words": [{"text":"Aaron","boundingPolygon":[{"x":545,"y":201},{"x":560,"y":202},{"x":560,"y":208},{"x":545,"y":208}],"confidence":0.718},{"text":"Blaion","boundingPolygon":[{"x":562,"y":202},{"x":579,"y":202},{"x":579,"y":207},{"x":562,"y":207}],"confidence":0.274}]
                    },
                    {
                        "text": "Daily SCRUM",
                        "boundingPolygon": [{"x":537,"y":258},{"x":574,"y":259},{"x":574,"y":266},{"x":537,"y":265}],
                        "words": [{"text":"Daily","boundingPolygon":[{"x":538,"y":259},{"x":551,"y":259},{"x":551,"y":266},{"x":538,"y":265}],"confidence":0.404},{"text":"SCRUM","boundingPolygon":[{"x":553,"y":259},{"x":570,"y":260},{"x":570,"y":265},{"x":553,"y":266}],"confidence":0.697}]
                    },
                    {
                        "text": "10:00 AM-11:00 AM",
                        "boundingPolygon": [{"x":535,"y":266},{"x":589,"y":265},{"x":589,"y":272},{"x":535,"y":273}],
                        "words": [{"text":"10:00","boundingPolygon":[{"x":539,"y":267},{"x":553,"y":266},{"x":552,"y":273},{"x":539,"y":274}],"confidence":0.219},{"text":"AM-11:00","boundingPolygon":[{"x":554,"y":266},{"x":578,"y":266},{"x":578,"y":272},{"x":554,"y":273}],"confidence":0.175},{"text":"AM","boundingPolygon":[{"x":580,"y":266},{"x":587,"y":266},{"x":586,"y":272},{"x":580,"y":272}],"confidence":1}]
                    },
                    {
                        "text": "Charlene de Crum",
                        "boundingPolygon": [{"x":538,"y":272},{"x":588,"y":273},{"x":588,"y":279},{"x":538,"y":279}],
                        "words": [{"text":"Charlene","boundingPolygon":[{"x":538,"y":273},{"x":562,"y":273},{"x":562,"y":280},{"x":538,"y":280}],"confidence":0.322},{"text":"de","boundingPolygon":[{"x":563,"y":273},{"x":569,"y":273},{"x":569,"y":280},{"x":563,"y":280}],"confidence":0.91},{"text":"Crum","boundingPolygon":[{"x":570,"y":273},{"x":582,"y":273},{"x":583,"y":280},{"x":571,"y":280}],"confidence":0.871}]
                    },
                    {
                        "text": "Quarterly NI Handa",
                        "boundingPolygon": [{"x":537,"y":295},{"x":588,"y":295},{"x":588,"y":302},{"x":537,"y":302}],
                        "words": [{"text":"Quarterly","boundingPolygon":[{"x":539,"y":296},{"x":563,"y":296},{"x":563,"y":302},{"x":538,"y":302}],"confidence":0.603},{"text":"NI","boundingPolygon":[{"x":564,"y":296},{"x":570,"y":296},{"x":571,"y":302},{"x":564,"y":302}],"confidence":0.73},{"text":"Handa","boundingPolygon":[{"x":572,"y":296},{"x":588,"y":296},{"x":588,"y":302},{"x":572,"y":302}],"confidence":0.905}]
                    },
                    {
                        "text": "11.00 AM-12:00 PM",
                        "boundingPolygon": [{"x":538,"y":303},{"x":587,"y":303},{"x":587,"y":309},{"x":538,"y":309}],
                        "words": [{"text":"11.00","boundingPolygon":[{"x":539,"y":303},{"x":552,"y":303},{"x":553,"y":309},{"x":539,"y":310}],"confidence":0.671},{"text":"AM-12:00","boundingPolygon":[{"x":554,"y":303},{"x":578,"y":303},{"x":578,"y":309},{"x":554,"y":309}],"confidence":0.656},{"text":"PM","boundingPolygon":[{"x":579,"y":303},{"x":586,"y":303},{"x":586,"y":309},{"x":580,"y":309}],"confidence":0.454}]
                    },
                    {
                        "text": "Bobek Shemar",
                        "boundingPolygon": [{"x":538,"y":310},{"x":577,"y":310},{"x":577,"y":316},{"x":538,"y":316}],
                        "words": [{"text":"Bobek","boundingPolygon":[{"x":539,"y":310},{"x":554,"y":311},{"x":554,"y":317},{"x":539,"y":317}],"confidence":0.632},{"text":"Shemar","boundingPolygon":[{"x":556,"y":311},{"x":576,"y":311},{"x":577,"y":317},{"x":556,"y":317}],"confidence":0.219}]
                    },
                    {
                        "text": "Weekly aband up",
                        "boundingPolygon": [{"x":538,"y":332},{"x":583,"y":333},{"x":583,"y":339},{"x":538,"y":338}],
                        "words": [{"text":"Weekly","boundingPolygon":[{"x":539,"y":333},{"x":557,"y":333},{"x":557,"y":339},{"x":539,"y":339}],"confidence":0.575},{"text":"aband","boundingPolygon":[{"x":558,"y":334},{"x":573,"y":334},{"x":573,"y":339},{"x":558,"y":339}],"confidence":0.475},{"text":"up","boundingPolygon":[{"x":574,"y":334},{"x":580,"y":334},{"x":580,"y":339},{"x":574,"y":339}],"confidence":0.865}]
                    },
                    {
                        "text": "12:00 PM-1:00 PM",
                        "boundingPolygon": [{"x":538,"y":339},{"x":585,"y":339},{"x":585,"y":346},{"x":538,"y":346}],
                        "words": [{"text":"12:00","boundingPolygon":[{"x":539,"y":339},{"x":553,"y":340},{"x":553,"y":347},{"x":539,"y":346}],"confidence":0.709},{"text":"PM-1:00","boundingPolygon":[{"x":554,"y":340},{"x":575,"y":340},{"x":575,"y":346},{"x":554,"y":347}],"confidence":0.908},{"text":"PM","boundingPolygon":[{"x":576,"y":340},{"x":583,"y":340},{"x":583,"y":346},{"x":576,"y":346}],"confidence":0.998}]
                    },
                    {
                        "text": "Danielle MarchTe",
                        "boundingPolygon": [{"x":538,"y":346},{"x":583,"y":346},{"x":583,"y":352},{"x":538,"y":352}],
                        "words": [{"text":"Danielle","boundingPolygon":[{"x":539,"y":347},{"x":559,"y":347},{"x":559,"y":352},{"x":539,"y":353}],"confidence":0.196},{"text":"MarchTe","boundingPolygon":[{"x":560,"y":347},{"x":582,"y":347},{"x":582,"y":352},{"x":560,"y":352}],"confidence":0.571}]
                    },
                    {
                        "text": "Product reviret",
                        "boundingPolygon": [{"x":537,"y":370},{"x":578,"y":370},{"x":578,"y":375},{"x":537,"y":375}],
                        "words": [{"text":"Product","boundingPolygon":[{"x":539,"y":370},{"x":559,"y":370},{"x":559,"y":376},{"x":539,"y":375}],"confidence":0.7},{"text":"reviret","boundingPolygon":[{"x":560,"y":370},{"x":578,"y":371},{"x":578,"y":375},{"x":560,"y":376}],"confidence":0.218}]
                    }
                ]
            }
        ]
    }
}

Next steps

In this quickstart, you learned how to make basic image analysis calls using the REST API. Next, learn more about the Analysis 4.0 API features.

Prerequisites

  • Sign in to Vision Studio with your Azure subscription and Azure AI services resource. See the Get started section of the overview if you need help with this step.

Analyze an image

  1. Select the Analyze images tab, and select panel titled Extract common tags from images.
  2. To use the try-it-out experience, you need to choose a resource and acknowledge that it will incur usage according to your pricing tier.
  3. Select an image from the available set, or upload your own.
  4. After you select your image, you'll see the detected tags appear in the output window along with their confidence scores. You can also select the JSON tab to see the JSON output that the API call returns.
  5. Below the try-it-out experience are next steps to start using this capability in your own application.

Next steps

In this quickstart, you used Vision Studio to do a basic image analysis task. Next, learn more about the Analyze Image API features.