Noisy Neighbor antipattern


Multitenant systems share resources between tenants, which means that the activity of one tenant can have a negative impact on another tenant's use of the system.

Problem description

When you build a service to be shared by multiple customers or tenants, you can build it to be multitenanted. A benefit of multitenant systems is that resources can be pooled and shared among tenants. This often results in lower costs and improved efficiency. However, if a single tenant uses a disproportionate amount of the resources available in the system, the overall performance of the system can suffer. The noisy neighbor problem occurs when one tenant's performance is degraded because of the activities of another tenant.

Consider an example multitenant system with two tenants. Tenant A's usage patterns and tenant B's usage patterns coincide, which means that at peak times, the total resource usage is higher than the capacity of the system:

Figure showing the resource usage of two tenants. Tenant A consumes the complete set of system resources, meaning tenant B experiences failures.

It's likely that whichever tenant's request that arrived first will take precedence. Then the other tenant will experience a noisy neighbor problem. Alternatively, both tenants may find their performance suffers.

The noisy neighbor problem also occurs even when each individual tenant is consuming relatively small amounts of the system's capacity, but the collective resource usage of many tenants results in a peak in overall usage:

Figure with 3 tenants, each consuming less the maximum throughput of the solution. In total, the three tenants consume the complete system resources.

This can happen when you have multiple tenants that all have similar usage patterns, or where you haven't provisioned sufficient capacity for the collective load on the system.

How to fix the problem

Noisy neighbor problems are an inherent risk in multitenant systems, and it's not possible to completely eliminate the possibility of being affected by a noisy neighbor. However, there are some steps that both clients and service providers can take to reduce the likelihood of noisy neighbor problems, or to mitigate their effects when they are observed.

Actions that clients can take

Actions that service providers can take

  • Monitor the resource usage for your system, both overall and for each tenant. Configure alerts to detect spikes in resource usage, and if possible, configure automation to automatically mitigate known issues by scaling up or out.
  • Apply resource governance, to avoid a single tenant that's overwhelming the system and reducing the capacity available to others. This step might take the form of quota enforcement, through the Throttling pattern or the Rate Limiting pattern.
  • Consider provisioning more infrastructure. This process might involve scaling up by upgrading some of your solution components, or it might involve scaling out by provisioning additional shards, if you follow the Sharding pattern, or stamps, if you follow the Deployment Stamps pattern.
  • Consider allowing tenants to purchase pre-provisioned or reserved capacity. This capacity provides tenants with more certainty that your solution adequately handles their workload.
  • Consider approaches to smooth out the resource usage:
    • If you host multiple instances of your solution, consider rebalancing tenants across the instances or stamps. For example, consider placing tenants with predictable and similar usage patterns, across multiple stamps, to flatten the peaks in their usage.
    • Consider whether you have background processes or resource-intensive workloads that aren't time-sensitive. Run these asynchronously at off-peak times, to preserve your peak resource capacity for time-sensitive workloads.
  • Consider whether your services provide controls to mitigate noisy neighbor problems. For example, when using Kubernetes, consider using pod limits, and when using Service Fabric, consider using the built-in governance capabilities.
  • If applicable, consider restricting the operations that tenants can perform. For example, prevent tenants from executing operations that will run very large database queries. This action mitigates the risk of tenants taking actions that might negatively impact other tenants.
  • If applicable, consider providing a Quality of Service (QoS) system. When you apply QoS, you prioritize some processes or workloads ahead of others. By factoring QoS into your design and architecture, you can ensure that high-priority operations take precedence when there's pressure on your resources.


  • In most cases, individual tenants don't mean to cause noisy neighbor issues. Individual tenants may not even be aware that their workloads cause noisy neighbor issues for others.
  • However, it's also possible that tenants use vulnerabilities in shared components to attack a service, either individually or by executing a distributed denial of service (DDoS) attack.
  • Regardless of the cause, it's important to treat these problems as resource governance issues, and to apply usage quotas, throttling, and governance controls to mitigate the problem.


    Make sure that you tell your clients about any throttling that you apply, or any usage quotas on your service. It's important that they reliably handle failed requests, and that they aren't surprised by any limitations or quotas you apply.

How to detect the problem

From a client's perspective, the noisy neighbor problem typically manifests as failed server requests, or requests that take a long time to complete. In particular, if the same request succeeds at other times and appears to fail randomly, there may be a noisy neighbor issue. Client applications should record telemetry to track the success rate and performance of the requests to services, and the applications should also record baseline performance metrics for comparison purposes.

From a service's perspective, the noisy neighbor issue may appear in several ways:

  • Spikes in resource usage. It's important to have a clear understanding of your normal baseline resource usage, and to configure monitoring and alerts to detect spikes in resource usage. Ensure you consider all of the resources that could affect your service's performance or availability. These resources include metrics like server CPU and memory usage, disk IO, database usage, network traffic, and metrics that are exposed by managed services, such as the number of requests and the synthetic and abstract performance metrics, such as the Azure Cosmos DB request units.
  • Failures when performing an operation for a tenant, even when that tenant isn't using a large portion of the system's resources. Such a pattern may indicate that the tenant is a victim of the noisy neighbor problem. Consider tracking the resource consumption by tenant. For example, when using Azure Cosmos DB, consider logging the request units used for each request, and add the tenant's identifier as a dimension to the telemetry, so that you can aggregate the request unit consumption for each tenant.


This article is maintained by Microsoft. It was originally written by the following contributors.

Principal author:

  • John Downs | Principal Customer Engineer, FastTrack for Azure

Other contributors:

To see non-public LinkedIn profiles, sign in to LinkedIn.