Azure OpenAI embeddings input binding for Azure Functions
Important
The Azure OpenAI extension for Azure Functions is currently in preview.
The Azure OpenAI embeddings input binding allows you to generate embeddings for inputs. The binding can generate embeddings from files or raw text inputs.
For information on setup and configuration details of the Azure OpenAI extension, see Azure OpenAI extensions for Azure Functions. To learn more about embeddings in Azure OpenAI Service, see Understand embeddings in Azure OpenAI Service.
Note
References and examples are only provided for the Node.js v4 model.
Note
References and examples are only provided for the Python v2 model.
Note
While both C# process models are supported, only isolated worker model examples are provided.
Example
This example shows how to generate embeddings for a raw text string.
[Function(nameof(GenerateEmbeddings_Http_RequestAsync))]
public async Task GenerateEmbeddings_Http_RequestAsync(
[HttpTrigger(AuthorizationLevel.Function, "post", Route = "embeddings")] HttpRequestData req,
[EmbeddingsInput("{rawText}", InputType.RawText, Model = "%EMBEDDING_MODEL_DEPLOYMENT_NAME%")] EmbeddingsContext embeddings)
{
using StreamReader reader = new(req.Body);
string request = await reader.ReadToEndAsync();
EmbeddingsRequest? requestBody = JsonSerializer.Deserialize<EmbeddingsRequest>(request);
this.logger.LogInformation(
"Received {count} embedding(s) for input text containing {length} characters.",
embeddings.Count,
requestBody?.RawText?.Length);
// TODO: Store the embeddings into a database or other storage.
}
This example shows how to retrieve embeddings stored at a specified file that is accessible to the function.
[Function(nameof(GetEmbeddings_Http_FilePath))]
public async Task GetEmbeddings_Http_FilePath(
[HttpTrigger(AuthorizationLevel.Function, "post", Route = "embeddings-from-file")] HttpRequestData req,
[EmbeddingsInput("{filePath}", InputType.FilePath, MaxChunkLength = 512, Model = "%EMBEDDING_MODEL_DEPLOYMENT_NAME%")] EmbeddingsContext embeddings)
{
using StreamReader reader = new(req.Body);
string request = await reader.ReadToEndAsync();
EmbeddingsRequest? requestBody = JsonSerializer.Deserialize<EmbeddingsRequest>(request);
this.logger.LogInformation(
"Received {count} embedding(s) for input file '{path}'.",
embeddings.Count,
requestBody?.FilePath);
// TODO: Store the embeddings into a database or other storage.
}
This example shows how to generate embeddings for a raw text string.
@FunctionName("GenerateEmbeddingsHttpRequest")
public HttpResponseMessage generateEmbeddingsHttpRequest(
@HttpTrigger(
name = "req",
methods = {HttpMethod.POST},
authLevel = AuthorizationLevel.ANONYMOUS,
route = "embeddings")
HttpRequestMessage<EmbeddingsRequest> request,
@EmbeddingsInput(name = "Embeddings", input = "{RawText}", inputType = InputType.RawText, model = "%EMBEDDING_MODEL_DEPLOYMENT_NAME%") String embeddingsContext,
final ExecutionContext context) {
if (request.getBody() == null)
{
throw new IllegalArgumentException("Invalid request body. Make sure that you pass in {\"rawText\": value } as the request body.");
}
JSONObject embeddingsContextJsonObject = new JSONObject(embeddingsContext);
context.getLogger().info(String.format("Received %d embedding(s) for input text containing %s characters.",
embeddingsContextJsonObject.getJSONObject("response")
.getJSONArray("data")
.getJSONObject(0)
.getJSONArray("embedding").length(),
request.getBody().getRawText().length()));
// TODO: Store the embeddings into a database or other storage.
return request.createResponseBuilder(HttpStatus.ACCEPTED)
.header("Content-Type", "application/json")
.build();
}
This example shows how to retrieve embeddings stored at a specified file that is accessible to the function.
@FunctionName("GenerateEmbeddingsHttpFilePath")
public HttpResponseMessage generateEmbeddingsHttpFilePath(
@HttpTrigger(
name = "req",
methods = {HttpMethod.POST},
authLevel = AuthorizationLevel.ANONYMOUS,
route = "embeddings-from-file")
HttpRequestMessage<EmbeddingsRequest> request,
@EmbeddingsInput(name = "Embeddings", input = "{FilePath}", inputType = InputType.FilePath, maxChunkLength = 512, model = "%EMBEDDING_MODEL_DEPLOYMENT_NAME%") String embeddingsContext,
final ExecutionContext context) {
if (request.getBody() == null)
{
throw new IllegalArgumentException("Invalid request body. Make sure that you pass in {\"rawText\": value } as the request body.");
}
JSONObject embeddingsContextJsonObject = new JSONObject(embeddingsContext);
context.getLogger().info(String.format("Received %d embedding(s) for input file %s.",
embeddingsContextJsonObject.getJSONObject("response")
.getJSONArray("data")
.getJSONObject(0)
.getJSONArray("embedding").length(),
request.getBody().getFilePath()));
// TODO: Store the embeddings into a database or other storage.
return request.createResponseBuilder(HttpStatus.ACCEPTED)
.header("Content-Type", "application/json")
.build();
}
Examples aren't yet available.
This example shows how to generate embeddings for a raw text string.
const embeddingsHttpInput = input.generic({
input: '{rawText}',
inputType: 'RawText',
type: 'embeddings',
model: '%EMBEDDING_MODEL_DEPLOYMENT_NAME%'
})
app.http('generateEmbeddings', {
methods: ['POST'],
route: 'embeddings',
authLevel: 'function',
extraInputs: [embeddingsHttpInput],
handler: async (request, context) => {
let requestBody: EmbeddingsHttpRequest = await request.json();
let response: any = context.extraInputs.get(embeddingsHttpInput);
context.log(
`Received ${response.count} embedding(s) for input text containing ${requestBody.RawText.length} characters.`
);
// TODO: Store the embeddings into a database or other storage.
return {status: 202}
}
});
This example shows how to retrieve embeddings stored at a specified file that is accessible to the function.
const embeddingsFilePathInput = input.generic({
input: '{filePath}',
inputType: 'FilePath',
type: 'embeddings',
maxChunkLength: 512,
model: '%EMBEDDING_MODEL_DEPLOYMENT_NAME%'
})
app.http('getEmbeddingsFilePath', {
methods: ['POST'],
route: 'embeddings-from-file',
authLevel: 'function',
extraInputs: [embeddingsFilePathInput],
handler: async (request, context) => {
let requestBody: EmbeddingsFilePath = await request.json();
let response: any = context.extraInputs.get(embeddingsFilePathInput);
context.log(
`Received ${response.count} embedding(s) for input file ${requestBody.FilePath}.`
);
// TODO: Store the embeddings into a database or other storage.
return {status: 202}
}
This example shows how to generate embeddings for a raw text string.
Here's the function.json file for generating the embeddings:
{
"bindings": [
{
"authLevel": "function",
"type": "httpTrigger",
"direction": "in",
"name": "Request",
"route": "embeddings",
"methods": [
"post"
]
},
{
"type": "http",
"direction": "out",
"name": "Response"
},
{
"name": "Embeddings",
"type": "embeddings",
"direction": "in",
"inputType": "RawText",
"input": "{rawText}",
"model": "%EMBEDDING_MODEL_DEPLOYMENT_NAME%"
}
]
}
For more information about function.json file properties, see the Configuration section.
using namespace System.Net
param($Request, $TriggerMetadata, $Embeddings)
$input = $Request.Body.RawText
Write-Host "Received $($Embeddings.Count) embedding(s) for input text containing $($input.Length) characters."
Push-OutputBinding -Name Response -Value ([HttpResponseContext]@{
StatusCode = [HttpStatusCode]::Accepted
})
This example shows how to generate embeddings for a raw text string.
@app.function_name("GenerateEmbeddingsHttpRequest")
@app.route(route="embeddings", methods=["POST"])
@app.embeddings_input(arg_name="embeddings", input="{rawText}", input_type="rawText", model="%EMBEDDING_MODEL_DEPLOYMENT_NAME%")
def generate_embeddings_http_request(req: func.HttpRequest, embeddings: str) -> func.HttpResponse:
user_message = req.get_json()
embeddings_json = json.loads(embeddings)
embeddings_request = {
"raw_text": user_message.get("rawText")
}
logging.info(f'Received {embeddings_json.get("count")} embedding(s) for input text '
f'containing {len(embeddings_request.get("raw_text"))} characters.')
# TODO: Store the embeddings into a database or other storage.
return func.HttpResponse(status_code=200)
Attributes
Apply the EmbeddingsInput
attribute to define an embeddings input binding, which supports these parameters:
Parameter | Description |
---|---|
Input | The input string for which to generate embeddings. |
Model | Optional. The ID of the model to use, which defaults to text-embedding-ada-002 . You shouldn't change the model for an existing database. For more information, see Usage. |
MaxChunkLength | Optional. The maximum number of characters used for chunking the input. For more information, see Usage. |
MaxOverlap | Optional. Gets or sets the maximum number of characters to overlap between chunks. |
InputType | Optional. Gets the type of the input. |
Annotations
The EmbeddingsInput
annotation enables you to define an embeddings input binding, which supports these parameters:
Element | Description |
---|---|
name | Gets or sets the name of the input binding. |
input | The input string for which to generate embeddings. |
model | Optional. The ID of the model to use, which defaults to text-embedding-ada-002 . You shouldn't change the model for an existing database. For more information, see Usage. |
maxChunkLength | Optional. The maximum number of characters used for chunking the input. For more information, see Usage. |
maxOverlap | Optional. Gets or sets the maximum number of characters to overlap between chunks. |
inputType | Optional. Gets the type of the input. |
Decorators
During the preview, define the input binding as a generic_input_binding
binding of type embeddings
, which supports these parameters: embeddings
decorator supports these parameters:
Parameter | Description |
---|---|
arg_name | The name of the variable that represents the binding parameter. |
input | The input string for which to generate embeddings. |
model | Optional. The ID of the model to use, which defaults to text-embedding-ada-002 . You shouldn't change the model for an existing database. For more information, see Usage. |
maxChunkLength | Optional. The maximum number of characters used for chunking the input. For more information, see Usage. |
max_overlap | Optional. Gets or sets the maximum number of characters to overlap between chunks. |
input_type | Gets the type of the input. |
Configuration
The binding supports these configuration properties that you set in the function.json file.
Property | Description |
---|---|
type | Must be EmbeddingsInput . |
direction | Must be in . |
name | The name of the input binding. |
input | The input string for which to generate embeddings. |
model | Optional. The ID of the model to use, which defaults to text-embedding-ada-002 . You shouldn't change the model for an existing database. For more information, see Usage. |
maxChunkLength | Optional. The maximum number of characters used for chunking the input. For more information, see Usage. |
maxOverlap | Optional. Gets or sets the maximum number of characters to overlap between chunks. |
inputType | Optional. Gets the type of the input. |
Configuration
The binding supports these properties, which are defined in your code:
Property | Description |
---|---|
input | The input string for which to generate embeddings. |
model | Optional. The ID of the model to use, which defaults to text-embedding-ada-002 . You shouldn't change the model for an existing database. For more information, see Usage. |
maxChunkLength | Optional. The maximum number of characters used for chunking the input. For more information, see Usage. |
maxOverlap | Optional. Gets or sets the maximum number of characters to overlap between chunks. |
inputType | Optional. Gets the type of the input. |
See the Example section for complete examples.
Usage
Changing the default embeddings model
changes the way that embeddings are stored in the vector database. Changing the default model can cause the lookups to start misbehaving when they don't match the rest of the data that was previously ingested into the vector database. The default model for embeddings is text-embedding-ada-002
.
When calculating the maximum character length for input chunks, consider that the maximum input tokens allowed for second-generation input embedding models like text-embedding-ada-002
is 8191
. A single token is approximately four characters in length (in English), which translates to roughly 32,000 (English) characters of input that can fit into a single chunk.