Read data from Azure Cosmos DB for Apache Cassandra tables using Spark
APPLIES TO: Cassandra
This article describes how to read data stored in Azure Cosmos DB for Apache Cassandra from Spark.
Set below spark configuration in your notebook cluster. It's one time activity.
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
Note
If you are using Spark 3.x, you do not need to install the Azure Cosmos DB helper and connection factory. You should also use remoteConnectionsPerExecutor
instead of connections_per_executor_max
for the Spark 3 connector (see above).
Warning
The Spark 3 samples shown in this article have been tested with Spark version 3.2.1 and the corresponding Cassandra Spark Connector com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0. Later versions of Spark and/or the Cassandra connector may not function as expected.
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
val readBooksDF = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
readBooksDF.explain
readBooksDF.show
val readBooksDF = spark.read.cassandraFormat("books", "books_ks", "").load()
val readBooksDF = spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.select("book_name","book_author", "book_pub_year")
readBooksDF.printSchema
readBooksDF.explain
readBooksDF.show
You can push down predicates to the database to allow for better optimized Spark queries. A predicate is a condition on a query that returns true or false, typically located in the WHERE clause. A predicate push down filters the data in the database query, reducing the number of entries retrieved from the database and improving query performance. By default the Spark Dataset API will automatically push down valid WHERE clauses to the database.
val df = spark.read.cassandraFormat("books", "books_ks").load
df.explain
val dfWithPushdown = df.filter(df("book_pub_year") > 1891)
dfWithPushdown.explain
readBooksDF.printSchema
readBooksDF.explain
readBooksDF.show
The Cassandra Filters
section of the physical plan includes the pushed down filter.
val bookRDD = sc.cassandraTable("books_ks", "books")
bookRDD.take(5).foreach(println)
val booksRDD = sc.cassandraTable("books_ks", "books").select("book_id","book_name").cache
booksRDD.take(5).foreach(println)
spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load.createOrReplaceTempView("books_vw")
select * from books_vw where book_pub_year > 1891
The following are additional articles on working with Azure Cosmos DB for Apache Cassandra from Spark: