Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
APPLIES TO:
MongoDB vCore
The $expr
operator allows the use of aggregation expressions within the query language, which enables us to compare fields from the same document, perform calculations, and use aggregation operators in find operations. The $expr
operator is useful for complex field comparisons that can't be achieved with traditional query operators.
Syntax
The syntax for the $expr
operator is as follows:
{
$expr: { <aggregation expression> }
}
Parameters
Description | |
---|---|
<aggregation expression> |
Any valid aggregation expression that evaluates to a boolean value. The expression includes field comparisons, arithmetic operations, conditional expressions, and other aggregation operators. |
Example
Let's understand the usage with sample json from stores
dataset.
{
"_id": "40d6f4d7-50cd-4929-9a07-0a7a133c2e74",
"name": "Proseware, Inc. | Home Entertainment Hub - East Linwoodbury",
"location": {
"lat": 70.1272,
"lon": 69.7296
},
"staff": {
"totalStaff": {
"fullTime": 19,
"partTime": 20
}
},
"sales": {
"totalSales": 151864,
"salesByCategory": [
{
"categoryName": "Sound Bars",
"totalSales": 2120
},
{
"categoryName": "Home Theater Projectors",
"totalSales": 45004
}
]
},
"storeOpeningDate": ISODate("2024-09-23T13:45:01.480Z"),
"lastUpdated": ISODate("2025-06-11T11:06:57.922Z"),
"status": "active",
"category": "high-volume",
"priority": 1,
"reviewDate": ISODate("2025-06-11T11:10:50.276Z")
}
Example 1: Compare full-time and part-time staff
The example retrieves stores with the number of full-time employees greater than part-time employees.
db.stores.find({"_id": "40d6f4d7-50cd-4929-9a07-0a7a133c2e74",
$expr: {
$gt: ["$staff.employeeCount.fullTime", "$staff.employeeCount.partTime"]
}
})
The query compares two fields within the same document and returns the document if the condition is met (full-time staff count exceeds part-time staff count).
{
"_id": "40d6f4d7-50cd-4929-9a07-0a7a133c2e74",
"name": "Proseware, Inc. | Home Entertainment Hub - East Linwoodbury",
"location": {
"lat": 70.1272,
"lon": 69.7296
},
"staff": {
"totalStaff": {
"fullTime": 19,
"partTime": 20
}
},
"sales": {
"totalSales": 151864,
"salesByCategory": [
{
"categoryName": "Sound Bars",
"totalSales": 2120
},
{
"categoryName": "Home Theater Projectors",
"totalSales": 45004
}
]
},
"storeOpeningDate": ISODate("2024-09-23T13:45:01.480Z"),
"lastUpdated": ISODate("2025-06-11T11:06:57.922Z"),
"status": "active",
"category": "high-volume",
"priority": 1,
"reviewDate": ISODate("2025-06-11T11:10:50.276Z")
}
Example 2: Conditional logic with store location
The example demonstrates the conditional logic usage with $expr pulling stores in the southern hemisphere where the staff efficiency ratio (sales per employee) exceeds 2000.
db.stores.find({{"_id": "40d6f4d7-50cd-4929-9a07-0a7a133c2e74",
$expr: {
$and: [
{ $gte: ["$location.lat", 70.1272] },
{
$gt: [
{
$divide: [
"$sales.totalSales",
{ $add: ["$staff.employeeCount.fullTime", "$staff.employeeCount.partTime"] }
]
},
2000
]
}
]
}
}).limit(1)
The query combines location-based filtering with a calculated efficiency metric, demonstrating the power of $expr
for complex business logic.
{
"_id": "40d6f4d7-50cd-4929-9a07-0a7a133c2e74",
"name": "Proseware, Inc. | Home Entertainment Hub - East Linwoodbury",
"location": {
"lat": 70.1272,
"lon": 69.7296
},
"staff": {
"totalStaff": {
"fullTime": 19,
"partTime": 20
}
},
"sales": {
"totalSales": 151864,
"salesByCategory": [
{
"categoryName": "Sound Bars",
"totalSales": 2120
},
{
"categoryName": "Home Theater Projectors",
"totalSales": 45004
}
]
},
"storeOpeningDate": ISODate("2024-09-23T13:45:01.480Z"),
"lastUpdated": ISODate("2025-06-11T11:06:57.922Z"),
"status": "active",
"category": "high-volume",
"priority": 1,
"reviewDate": ISODate("2025-06-11T11:10:50.276Z")
}
Related content
- Review options for Migrating from MongoDB to Azure Cosmos DB for MongoDB (vCore)
- Read more about Feature compatibility with MongoDB