Share via


create_map

Creates a new map column from an even number of input columns or column references. The input columns are grouped into key-value pairs to form a map. For instance, the input (key1, value1, key2, value2, ...) would produce a map that associates key1 with value1, key2 with value2, and so on. The function supports grouping columns as a list as well.

Syntax

from pyspark.sql import functions as sf

sf.create_map(*cols)

Parameters

Parameter Type Description
cols pyspark.sql.Column or str The input column names or Column objects grouped into key-value pairs. These can also be expressed as a list of columns.

Returns

pyspark.sql.Column: A new Column of Map type, where each value is a map formed from the corresponding key-value pairs provided in the input arguments.

Examples

Example 1: Basic usage of create_map function.

from pyspark.sql import functions as sf
df = spark.createDataFrame([("Alice", 2), ("Bob", 5)], ("name", "age"))
df.select(sf.create_map('name', 'age')).show()
+--------------+
|map(name, age)|
+--------------+
|  {Alice -> 2}|
|    {Bob -> 5}|
+--------------+

Example 2: Usage of create_map function with a list of columns.

from pyspark.sql import functions as sf
df = spark.createDataFrame([("Alice", 2), ("Bob", 5)], ("name", "age"))
df.select(sf.create_map([df.name, df.age])).show()
+--------------+
|map(name, age)|
+--------------+
|  {Alice -> 2}|
|    {Bob -> 5}|
+--------------+

Example 3: Usage of create_map function with more than one key-value pair.

from pyspark.sql import functions as sf
df = spark.createDataFrame([("Alice", 2, "female"),
    ("Bob", 5, "male")], ("name", "age", "gender"))
df.select(sf.create_map(sf.lit('name'), df['name'],
    sf.lit('gender'), df['gender'])).show(truncate=False)
+---------------------------------+
|map(name, name, gender, gender)  |
+---------------------------------+
|{name -> Alice, gender -> female}|
|{name -> Bob, gender -> male}    |
+---------------------------------+

Example 4: Usage of create_map function with values of different types.

from pyspark.sql import functions as sf
df = spark.createDataFrame([("Alice", 2, 22.2),
    ("Bob", 5, 36.1)], ("name", "age", "weight"))
df.select(sf.create_map(sf.lit('age'), df['age'],
    sf.lit('weight'), df['weight'])).show(truncate=False)
+-----------------------------+
|map(age, age, weight, weight)|
+-----------------------------+
|{age -> 2.0, weight -> 22.2} |
|{age -> 5.0, weight -> 36.1} |
+-----------------------------+