Share via


stack

Separates col1, ..., colk into n rows. Uses column names col0, col1, etc. by default unless specified otherwise.

Syntax

from pyspark.sql import functions as sf

sf.stack(*cols)

Parameters

Parameter Type Description
cols pyspark.sql.Column or column name The first element should be a literal int for the number of rows to be separated, and the remaining are input elements to be separated.

Examples

Example 1: Stack with 2 rows

from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2, 3)], ['a', 'b', 'c'])
df.select('*', sf.stack(sf.lit(2), df.a, df.b, 'c')).show()
+---+---+---+----+----+
|  a|  b|  c|col0|col1|
+---+---+---+----+----+
|  1|  2|  3|   1|   2|
|  1|  2|  3|   3|NULL|
+---+---+---+----+----+

Example 2: Stack with alias

from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2, 3)], ['a', 'b', 'c'])
df.select('*', sf.stack(sf.lit(2), df.a, df.b, 'c').alias('x', 'y')).show()
+---+---+---+---+----+
|  a|  b|  c|  x|   y|
+---+---+---+---+----+
|  1|  2|  3|  1|   2|
|  1|  2|  3|  3|NULL|
+---+---+---+---+----+

Example 3: Stack with 3 rows

from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2, 3)], ['a', 'b', 'c'])
df.select('*', sf.stack(sf.lit(3), df.a, df.b, 'c')).show()
+---+---+---+----+
|  a|  b|  c|col0|
+---+---+---+----+
|  1|  2|  3|   1|
|  1|  2|  3|   2|
|  1|  2|  3|   3|
+---+---+---+----+

Example 4: Stack with 4 rows

from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2, 3)], ['a', 'b', 'c'])
df.select('*', sf.stack(sf.lit(4), df.a, df.b, 'c')).show()
+---+---+---+----+
|  a|  b|  c|col0|
+---+---+---+----+
|  1|  2|  3|   1|
|  1|  2|  3|   2|
|  1|  2|  3|   3|
|  1|  2|  3|NULL|
+---+---+---+----+