Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Converts a pyspark.sql.Column into pyspark.sql.types.DateType using the optionally specified format. Specify formats according to datetime pattern.
By default, it follows casting rules to pyspark.sql.types.DateType if the format is omitted. Equivalent to col.cast("date").
For the corresponding Databricks SQL function, see to_date function.
Syntax
from pyspark.databricks.sql import functions as dbf
dbf.to_date(col=<col>, format=<format>)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or str |
input column of values to convert. |
format |
literal string, optional |
format to use to convert date values. |
Returns
pyspark.sql.Column: date value as pyspark.sql.types.DateType type.
Examples
from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['ts'])
df.select('*', dbf.to_date(df.ts)).show()
df.select('*', dbf.to_date('ts', 'yyyy-MM-dd HH:mm:ss')).show()