Databricks Runtime 4.0 (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in March 2018.
Important
This release was deprecated on November 1, 2018. For more information about the Databricks Runtime deprecation policy and schedule, see Databricks support lifecycles.
The following release notes provide information about Databricks Runtime 4.0, powered by Apache Spark.
Changes and improvements
- The JSON data source now tries to auto-detect encoding instead of assuming it to be UTF-8. In cases where the auto-detection fails, users can specify the charset option to enforce a certain encoding. See Charset auto-detection.
- Scoring and prediction using Spark MLlib pipelines in Structured Streaming is fully supported.
- Databricks ML Model Export is fully supported. With this feature, you can train a Spark MLlib model on Databricks, export it with a function call, and use a Databricks library in the system of your choice to import the model and score new data.
- A new Spark data source implementation offers scalable read/write access to Azure Synapse Analytics. See Spark - Synapse Analytics Connector.
- The schema of the
from_json
function is now always converted to a nullable one. In other words, all fields, including nested ones, are nullable. This ensures that the data is compatible with the schema, preventing corruption after writing the data to parquet when a field is missing in the data and the user-provided schema declares the field as non-nullable. - Upgraded some installed Python libraries:
- futures: from 3.1.1 to 3.2.0
- pandas: from 0.18.1 to 0.19.2
- pyarrow: from 0.4.1 to 0.8.0
- setuptools: from 38.2.3 to 38.5.1
- tornado: 4.5.2 to 4.5.3
- Upgraded several installed R libraries. See Installed R Libraries.
- Upgraded AWS Java SDK from 1.11.126 to 1.11.253.
- Upgraded SQL Server JDBC driver from 6.1.0.jre8 to 6.2.2.jre8.
- Upgraded PostgreSQL JDBC driver from 9.4-1204-jdbc41 to 42.1.4.
Apache Spark
Databricks Runtime 4.0 includes Apache Spark 2.3.0.
Core, PySpark, and Spark SQL
Major features
- Vectorized ORC Reader: [SPARK-16060]: Adds support for new ORC reader that substantially improves the ORC scan throughput through vectorization (2-5x). To enable the reader, users can set
spark.sql.orc.impl
tonative
. - Spark History Server V2: [SPARK-18085]: A new spark history server (SHS) backend that provides better scalability for large-scale applications with a more efficient event storage mechanism.
- Data source API V2: [SPARK-15689][SPARK-22386]: An experimental API for plugging in new data sources in Spark. The new API attempts to address several limitations of the V1 API and aims to facilitate development of highly-performant, easy-to-maintain, and extensible external data sources. This API is still undergoing active development and breaking changes should be expected.
- PySpark Performance Enhancements: [SPARK-22216][SPARK-21187]: Significant improvements in Python performance and interoperability by fast data serialization and vectorized execution.
Performance and stability
- [SPARK-21975]: Histogram support in cost-based optimizer.
- [SPARK-20331]: Better support for predicate pushdown for Hive partition pruning.
- [SPARK-19112]: Support for ZStandard compression codec.
- [SPARK-21113]: Support for read ahead input stream to amortize disk I/O cost in the spill reader.
- [SPARK-22510][SPARK-22692][SPARK-21871]: Further stabilize the codegen framework to avoid hitting the 64KB JVM bytecode limit on the Java method and Java compiler constant pool limit.
- [SPARK-23207]: Fixed a long standing bug in Spark where consecutive shuffle+repartition on a DataFrame could lead to incorrect answers in certain surgical cases.
- [SPARK-22062][SPARK-17788][SPARK-21907]: Fix various causes of OOMs.
- [SPARK-22489][SPARK-22916][SPARK-22895][SPARK-20758][SPARK-22266][SPARK-19122][SPARK-22662][SPARK-21652]: Enhancements in rule-based optimizer and planner.
Other notable changes
- [SPARK-20236]: Support Hive-style dynamic partition overwrite semantics.
- [SPARK-4131]: Support
INSERT OVERWRITE DIRECTORY
to write data directly into the filesystem from a query. - [SPARK-19285][SPARK-22945][SPARK-21499][SPARK-20586][SPARK-20416][SPARK-20668]: UDF enhancements.
- [SPARK-20463][SPARK-19951][SPARK-22934][SPARK-21055][SPARK-17729][SPARK-20962][SPARK-20963][SPARK-20841][SPARK-17642][SPARK-22475][SPARK-22934]: Improved ANSI SQL compliance and Hive compatibility.
- [SPARK-20746]: More comprehensive SQL built-in functions.
- [SPARK-21485]: Spark SQL documentation generation for built-in functions.
- [SPARK-19810]: Remove support for Scala
2.10
. - [SPARK-22324]: Upgrade Arrow to
0.8.0
and Netty to4.1.17
.
Structured Streaming
Continuous Processing
- A new execution engine that can execute streaming queries with sub-millisecond end-to-end latency by changing only a single line of user code. To learn more see the programming guide.
Stream-Stream Joins
- Ability to join two streams of data, buffering rows until matching tuples arrive in the other stream. Predicates can be used against event time columns to bound the amount of state that needs to be retained.
Streaming API V2
- An experimental API for plugging in new source and sinks that works for batch, micro-batch, and continuous execution. This API is still undergoing active development, and breaking changes should be expected.
MLlib
Highlights
- ML Prediction now works with Structured Streaming, using updated APIs. Details follow.
New and improved APIs
- [SPARK-21866]: Built-in support for reading images into a DataFrame (Scala/Java/Python).
- [SPARK-19634]: DataFrame functions for descriptive summary statistics over vector columns (Scala/Java).
- [SPARK-14516]:
ClusteringEvaluator
for tuning clustering algorithms, supporting Cosine silhouette and squared Euclidean silhouette metrics (Scala/Java/Python). - [SPARK-3181]: Robust linear regression with Huber loss (Scala/Java/Python).
- [SPARK-13969]:
FeatureHasher
transformer (Scala/Java/Python). - Multiple column support for several feature transformers:
- [SPARK-13030]:
OneHotEncoderEstimator
(Scala/Java/Python) - [SPARK-22397]:
QuantileDiscretizer
(Scala/Java) - [SPARK-20542]:
Bucketizer
(Scala/Java/Python)
- [SPARK-13030]:
- [SPARK-21633] and SPARK-21542]: Improved support for custom pipeline components in Python.
New features
- [SPARK-21087]:
CrossValidator
andTrainValidationSplit
can collect all models when fitting (Scala/Java). This allows you to inspect or save all fitted models. - [SPARK-19357]: Meta-algorithms
CrossValidator
,TrainValidationSplit
,OneVsRest
support a parallelism Param for fitting multiple sub-models in parallel Spark jobs. - [SPARK-17139]: Model summary for multinomial logistic regression (Scala/Java/Python)
- [SPARK-18710]: Add offset in GLM.
- [SPARK-20199]: Added
featureSubsetStrategy
Param toGBTClassifier
andGBTRegressor
. Using this to subsample features can significantly improve training speed; this option has been a key strength ofxgboost
.
Other notable changes
- [SPARK-22156]: Fixed
Word2Vec
learning rate scaling withnum
iterations. The new learning rate is set to match the originalWord2Vec
C code and should give better results from training. - [SPARK-22289]: Add
JSON
support for Matrix parameters (This fixed a bug for ML persistence withLogisticRegressionModel
when using bounds on coefficients.) - [SPARK-22700]:
Bucketizer.transform
incorrectly drops row containingNaN
. When ParamhandleInvalid
was set to “skip,”Bucketizer
would drop a row with a valid value in the input column if another (irrelevant) column had aNaN
value. - [SPARK-22446]: Catalyst optimizer sometimes caused
StringIndexerModel
to throw an incorrect “Unseen label” exception whenhandleInvalid
was set to “error.” This could happen for filtered data, due to predicate push-down, causing errors even after invalid rows had already been filtered from the input dataset. - [SPARK-21681]: Fixed an edge case bug in multinomial logistic regression that resulted in incorrect coefficients when some features had zero variance.
- Major optimizations:
- [SPARK-22707]: Reduced memory consumption for
CrossValidator
. - [SPARK-22949]: Reduced memory consumption for
TrainValidationSplit
. - [SPARK-21690]:
Imputer
should train using a single pass over the data. - [SPARK-14371]:
OnlineLDAOptimizer
avoids collecting statistics to the driver for each mini-batch.
- [SPARK-22707]: Reduced memory consumption for
SparkR
The main focus of SparkR in the 2.3.0 release was improving the stability of UDFs and adding several new SparkR wrappers around existing APIs:
Major features
- Improved function parity between SQL and R
- [SPARK-22933]: Structured Streaming APIs for
withWatermark
,trigger
,partitionBy
and stream-stream joins. - [SPARK-21266]: SparkR UDF with DDL-formatted schema support.
- [SPARK-20726][SPARK-22924][SPARK-22843]: Several new Dataframe API Wrappers.
- [SPARK-15767][SPARK-21622][SPARK-20917][SPARK-20307][SPARK-20906]: Several new SparkML API Wrappers.
GraphX
Optimizations
- [SPARK-5484]: Pregel now checkpoints periodically to avoid
StackOverflowErrors
. - [SPARK-21491]: Small performance improvement in several places.
Deprecations
Python
- [SPARK-23122]: Deprecate
register*
for UDFs inSQLContext
andCatalog
in PySpark
MLlib
- [SPARK-13030]:
OneHotEncoder
has been deprecated and will be removed in 3.0. It has been replaced by the newOneHotEncoderEstimator
.OneHotEncoderEstimator
will be renamed toOneHotEncoder
in 3.0 (butOneHotEncoderEstimator
will be kept as an alias).
Changes of behavior
SparkSQL
- [SPARK-22036]: By default arithmetic operations between decimals return a rounded value if an exact representation is not possible (instead of returning
NULL
in the prior versions) - [SPARK-22937]: When all inputs are binary, SQL
elt()
returns an output as binary. Otherwise, it returns as a string. In prior versions, it always returned as a string regardless of input types. - [SPARK-22895]: The Join/Filter’s deterministic predicates that are after the first non-deterministic predicates are also pushed down/through the child operators, if possible. In the prior versions, these filters were not eligible for predicate pushdown.
- [SPARK-22771]: When all inputs are binary,
functions.concat()
returns an output as binary. Otherwise, it returns as a string. In the prior versions, it always returned as a string regardless of input types. - [SPARK-22489]: When either of the join sides is broadcastable, we prefer to broadcast the table that is explicitly specified in a broadcast hint.
- [SPARK-22165]: Partition column inference previously found incorrect common type for different inferred types. For example, previously it ended up with
double
type as the common type fordouble
type anddate
type. Now it finds the correct common type for such conflicts. For details, see the migration guide. - [SPARK-22100]: The
percentile_approx
function previously acceptednumeric
type input and outputteddouble
type results. Now it supportsdate
type,timestamp
type andnumeric
types as input types. The result type is also changed to be the same as the input type, which is more reasonable for percentiles. - [SPARK-21610]: the queries from raw JSON/CSV files are disallowed when the referenced columns only include the internal corrupt record column (named
_corrupt_record
by default). Instead, you can cache or save the parsed results and then send the same query. - [SPARK-23421]: Since Spark 2.2.1 and 2.3.0, the schema is always inferred at runtime when the data source tables have the columns that exist in both partition schema and data schema. The inferred schema does not have the partitioned columns. When reading the table, Spark respects the partition values of these overlapping columns instead of the values stored in the data source files. In 2.2.0 and 2.1.x release, the inferred schema is partitioned but the data of the table is invisible to users (i.e., the result set is empty).
PySpark
- [SPARK-19732]:
na.fill()
orfillna
also accepts boolean and replaces nulls with booleans. In prior Spark versions, PySpark just ignores it and returns the original Dataset/DataFrame. - [SPARK-22395]: pandas
0.19.2
or upper is required for using pandas related functionalities, such astoPandas
,createDataFrame
from pandas DataFrame, etc. - [SPARK-22395]: The behavior of timestamp values for pandas related functionalities was changed to respect session timezone, which is ignored in the prior versions.
- [SPARK-23328]:
df.replace
does not allow to omitvalue
whento_replace
is not a dictionary. Previously,value
could be omitted in the other cases and hadNone
by default, which is counter-intuitive and error prone.
MLlib
- Breaking API Changes: The class and trait hierarchy for logistic regression model summaries was changed to be cleaner and better accommodate the addition of the multi-class summary. This is a breaking change for user code that casts a
LogisticRegressionTrainingSummary
to aBinaryLogisticRegressionTrainingSummary
. Users should instead use themodel.binarySummary
method. See [SPARK-17139]: for more detail (note this is an@Experimental
API). This does not affect the Python summary method, which will still work correctly for both multinomial and binary cases. - [SPARK-21806]:
BinaryClassificationMetrics.pr()
: first point (0.0, 1.0) is misleading and has been replaced by (0.0, p) where precision p matches the lowest recall point. - [SPARK-16957]: Decision trees now use weighted midpoints when choosing split values. This may change results from model training.
- [SPARK-14657]:
RFormula
without an intercept now outputs the reference category when encoding string terms, in order to match native R behavior. This may change results from model training. - [SPARK-21027]: The default parallelism used in
OneVsRest
is now set to 1 (i.e. serial). In 2.2 and earlier versions, the level of parallelism was set to the default threadpool size in Scala. This may change performance. - [SPARK-21523]: Upgraded Breeze to
0.13.2
. This included an important bug fix in strong Wolfe line search for L-BFGS. - [SPARK-15526]: The JPMML dependency is now shaded.
- Also see the “Bug fixes” section for behavior changes resulting from fixing bugs.
Known issues
- [SPARK-23523][SQL]: Incorrect result caused by the rule
OptimizeMetadataOnlyQuery
. - [SPARK-23406]: Bugs in stream-stream self-joins.
Maintenance updates
See Databricks Runtime 4.0 maintenance updates.
System environment
- Operating System: Ubuntu 16.04.4 LTS
- Java: 1.8.0_151
- Scala: 2.11.8
- Python: 2.7.12 (or 3.5.2 if using Python 3)
- R: R version 3.4.3 (2017-11-30)
- GPU clusters: The following NVIDIA GPU libraries are installed:
- Tesla driver 375.66
- CUDA 8.0
- CUDNN 6.0
Installed Python libraries
Library | Version | Library | Version | Library | Version |
---|---|---|---|---|---|
ansi2html | 1.1.1 | argparse | 1.2.1 | backports-abc | 0.5 |
boto | 2.42.0 | boto3 | 1.4.1 | botocore | 1.4.70 |
brewer2mpl | 1.4.1 | certifi | 2016.2.28 | cffi | 1.7.0 |
chardet | 2.3.0 | colorama | 0.3.7 | configobj | 5.0.6 |
cryptography | 1.5 | cycler | 0.10.0 | Cython | 0.24.1 |
decorator | 4.0.10 | docutils | 0.14 | enum34 | 1.1.6 |
et-xmlfile | 1.0.1 | freetype-py | 1.0.2 | funcsigs | 1.0.2 |
fusepy | 2.0.4 | futures | 3.2.0 | ggplot | 0.6.8 |
html5lib | 0.999 | idna | 2.1 | ipaddress | 1.0.16 |
ipython | 2.2.0 | ipython-genutils | 0.1.0 | jdcal | 1.2 |
Jinja2 | 2.8 | jmespath | 0.9.0 | llvmlite | 0.13.0 |
lxml | 3.6.4 | MarkupSafe | 0.23 | matplotlib | 1.5.3 |
mpld3 | 0.2 | msgpack-python | 0.4.7 | ndg-httpsclient | 0.3.3 |
numba | 0.28.1 | numpy | 1.11.1 | openpyxl | 2.3.2 |
pandas | 0.19.2 | pathlib2 | 2.1.0 | patsy | 0.4.1 |
pexpect | 4.0.1 | pickleshare | 0.7.4 | Pillow | 3.3.1 |
pip | 9.0.1 | ply | 3.9 | prompt-toolkit | 1.0.7 |
psycopg2 | 2.6.2 | ptyprocess | 0.5.1 | py4j | 0.10.3 |
pyarrow | 0.8.0 | pyasn1 | 0.1.9 | pycparser | 2.14 |
Pygments | 2.1.3 | PyGObject | 3.20.0 | pyOpenSSL | 16.0.0 |
pyparsing | 2.2.0 | pypng | 0.0.18 | Python | 2.7.12 |
python-dateutil | 2.5.3 | python-geohash | 0.8.5 | pytz | 2016.6.1 |
requests | 2.11.1 | s3transfer | 0.1.9 | scikit-learn | 0.18.1 |
scipy | 0.18.1 | scour | 0.32 | seaborn | 0.7.1 |
setuptools | 38.5.1 | simplejson | 3.8.2 | simples3 | 1.0 |
singledispatch | 3.4.0.3 | six | 1.10.0 | statsmodels | 0.6.1 |
tornado | 4.5.3 | traitlets | 4.3.0 | urllib3 | 1.19.1 |
virtualenv | 15.0.1 | wcwidth | 0.1.7 | wheel | 0.30.0 |
wsgiref | 0.1.2 |
Installed R libraries
Library | Version | Library | Version | Library | Version |
---|---|---|---|---|---|
abind | 1.4-5 | assertthat | 0.2.0 | backports | 1.1.1 |
base | 3.4.3 | BH | 1.65.0-1 | bindr | 0.1 |
bindrcpp | 0.2 | bit | 1.1-12 | bit64 | 0.9-7 |
bitops | 1.0-6 | blob | 1.1.0 | boot | 1.3-20 |
brew | 1.0-6 | broom | 0.4.3 | car | 2.1-6 |
caret | 6.0-77 | chron | 2.3-51 | class | 7.3-14 |
cluster | 2.0.6 | codetools | 0.2-15 | colorspace | 1.3-2 |
commonmark | 1.4 | compiler | 3.4.3 | crayon | 1.3.4 |
curl | 3.0 | CVST | 0.2-1 | data.table | 1.10.4-3 |
datasets | 3.4.3 | DBI | 0.7 | ddalpha | 1.3.1 |
DEoptimR | 1.0-8 | desc | 1.1.1 | devtools | 1.13.4 |
dichromat | 2.0-0 | digest | 0.6.12 | dimRed | 0.1.0 |
doMC | 1.3.4 | dplyr | 0.7.4 | DRR | 0.0.2 |
foreach | 1.4.3 | foreign | 0.8-69 | gbm | 2.1.3 |
ggplot2 | 2.2.1 | git2r | 0.19.0 | glmnet | 2.0-13 |
glue | 1.2.0 | gower | 0.1.2 | graphics | 3.4.3 |
grDevices | 3.4.3 | grid | 3.4.3 | gsubfn | 0.6-6 |
gtable | 0.2.0 | h2o | 3.16.0.1 | httr | 1.3.1 |
hwriter | 1.3.2 | hwriterPlus | 1.0-3 | ipred | 0.9-6 |
iterators | 1.0.8 | jsonlite | 1.5 | kernlab | 0.9-25 |
KernSmooth | 2.23-15 | labeling | 0.3 | lattice | 0.20-35 |
lava | 1.5.1 | lazyeval | 0.2.1 | littler | 0.3.2 |
lme4 | 1.1-14 | lubridate | 1.7.1 | magrittr | 1.5 |
mapproj | 1.2-5 | maps | 3.2.0 | MASS | 7.3-48 |
Matrix | 1.2-11 | MatrixModels | 0.4-1 | memoise | 1.1.0 |
methods | 3.4.3 | mgcv | 1.8-23 | mime | 0.5 |
minqa | 1.2.4 | mnormt | 1.5-5 | ModelMetrics | 1.1.0 |
munsell | 0.4.3 | mvtnorm | 1.0-6 | nlme | 3.1-131 |
nloptr | 1.0.4 | nnet | 7.3-12 | numDeriv | 2016.8-1 |
openssl | 0.9.9 | parallel | 3.4.3 | pbkrtest | 0.4-7 |
pkgconfig | 2.0.1 | pkgKitten | 0.1.4 | plogr | 0.1-1 |
plyr | 1.8.4 | praise | 1.0.0 | pROC | 1.10.0 |
prodlim | 1.6.1 | proto | 1.0.0 | psych | 1.7.8 |
purrr | 0.2.4 | quantreg | 5.34 | R.methodsS3 | 1.7.1 |
R.oo | 1.21.0 | R.utils | 2.6.0 | R6 | 2.2.2 |
randomForest | 4.6-12 | RColorBrewer | 1.1-2 | Rcpp | 0.12.14 |
RcppEigen | 0.3.3.3.1 | RcppRoll | 0.2.2 | RCurl | 1.95-4.8 |
recipes | 0.1.1 | reshape2 | 1.4.2 | rlang | 0.1.4 |
robustbase | 0.92-8 | RODBC | 1.3-15 | roxygen2 | 6.0.1 |
rpart | 4.1-12 | rprojroot | 1.2 | Rserve | 1.7-3 |
RSQLite | 2.0 | rstudioapi | 0.7 | scales | 0.5.0 |
sfsmisc | 1.1-1 | sp | 1.2-5 | SparkR | 2.3.0 |
SparseM | 1.77 | spatial | 7.3-11 | splines | 3.4.3 |
sqldf | 0.4-11 | statmod | 1.4.30 | stats | 3.4.3 |
stats4 | 3.4.3 | stringi | 1.1.6 | stringr | 1.2.0 |
survival | 2.41-3 | tcltk | 3.4.3 | TeachingDemos | 2.10 |
testthat | 1.0.2 | tibble | 1.3.4 | tidyr | 0.7.2 |
tidyselect | 0.2.3 | timeDate | 3042.101 | tools | 3.4.3 |
utils | 3.4.3 | viridisLite | 0.2.0 | whisker | 0.3-2 |
withr | 2.1.0 | xml2 | 1.1.1 |
Installed Java and Scala libraries (Scala 2.11 cluster version)
Group ID | Artifact ID | Version |
---|---|---|
antlr | antlr | 2.7.7 |
com.amazonaws | amazon-kinesis-client | 1.7.3 |
com.amazonaws | aws-java-sdk-autoscaling | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudformation | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudfront | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudhsm | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudsearch | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudtrail | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudwatch | 1.11.253 |
com.amazonaws | aws-java-sdk-cloudwatchmetrics | 1.11.253 |
com.amazonaws | aws-java-sdk-codedeploy | 1.11.253 |
com.amazonaws | aws-java-sdk-cognitoidentity | 1.11.253 |
com.amazonaws | aws-java-sdk-cognitosync | 1.11.253 |
com.amazonaws | aws-java-sdk-config | 1.11.253 |
com.amazonaws | aws-java-sdk-core | 1.11.253 |
com.amazonaws | aws-java-sdk-datapipeline | 1.11.253 |
com.amazonaws | aws-java-sdk-directconnect | 1.11.253 |
com.amazonaws | aws-java-sdk-directory | 1.11.253 |
com.amazonaws | aws-java-sdk-dynamodb | 1.11.253 |
com.amazonaws | aws-java-sdk-ec2 | 1.11.253 |
com.amazonaws | aws-java-sdk-ecs | 1.11.253 |
com.amazonaws | aws-java-sdk-efs | 1.11.253 |
com.amazonaws | aws-java-sdk-elasticache | 1.11.253 |
com.amazonaws | aws-java-sdk-elasticbeanstalk | 1.11.253 |
com.amazonaws | aws-java-sdk-elasticloadbalancing | 1.11.253 |
com.amazonaws | aws-java-sdk-elastictranscoder | 1.11.253 |
com.amazonaws | aws-java-sdk-emr | 1.11.253 |
com.amazonaws | aws-java-sdk-glacier | 1.11.253 |
com.amazonaws | aws-java-sdk-iam | 1.11.253 |
com.amazonaws | aws-java-sdk-importexport | 1.11.253 |
com.amazonaws | aws-java-sdk-kinesis | 1.11.253 |
com.amazonaws | aws-java-sdk-kms | 1.11.253 |
com.amazonaws | aws-java-sdk-lambda | 1.11.253 |
com.amazonaws | aws-java-sdk-logs | 1.11.253 |
com.amazonaws | aws-java-sdk-machinelearning | 1.11.253 |
com.amazonaws | aws-java-sdk-opsworks | 1.11.253 |
com.amazonaws | aws-java-sdk-rds | 1.11.253 |
com.amazonaws | aws-java-sdk-redshift | 1.11.253 |
com.amazonaws | aws-java-sdk-route53 | 1.11.253 |
com.amazonaws | aws-java-sdk-s3 | 1.11.253 |
com.amazonaws | aws-java-sdk-ses | 1.11.253 |
com.amazonaws | aws-java-sdk-simpledb | 1.11.253 |
com.amazonaws | aws-java-sdk-simpleworkflow | 1.11.253 |
com.amazonaws | aws-java-sdk-sns | 1.11.253 |
com.amazonaws | aws-java-sdk-sqs | 1.11.253 |
com.amazonaws | aws-java-sdk-ssm | 1.11.253 |
com.amazonaws | aws-java-sdk-storagegateway | 1.11.253 |
com.amazonaws | aws-java-sdk-sts | 1.11.253 |
com.amazonaws | aws-java-sdk-support | 1.11.253 |
com.amazonaws | aws-java-sdk-swf-libraries | 1.11.22 |
com.amazonaws | aws-java-sdk-workspaces | 1.11.253 |
com.amazonaws | jmespath-java | 1.11.253 |
com.carrotsearch | hppc | 0.7.2 |
com.chuusai | shapeless_2.11 | 2.3.2 |
com.clearspring.analytics | stream | 2.7.0 |
com.databricks | Rserve | 1.8-3 |
com.databricks | dbml-local_2.11 | 0.3.0-db1-spark2.3 |
com.databricks | dbml-local_2.11-tests | 0.3.0-db1-spark2.3 |
com.databricks | jets3t | 0.7.1-0 |
com.databricks.scalapb | compilerplugin_2.11 | 0.4.15-9 |
com.databricks.scalapb | scalapb-runtime_2.11 | 0.4.15-9 |
com.esotericsoftware | kryo-shaded | 3.0.3 |
com.esotericsoftware | minlog | 1.3.0 |
com.fasterxml | classmate | 1.0.0 |
com.fasterxml.jackson.core | jackson-annotations | 2.6.7 |
com.fasterxml.jackson.core | jackson-core | 2.6.7 |
com.fasterxml.jackson.core | jackson-databind | 2.6.7.1 |
com.fasterxml.jackson.dataformat | jackson-dataformat-cbor | 2.6.7 |
com.fasterxml.jackson.datatype | jackson-datatype-joda | 2.6.7 |
com.fasterxml.jackson.module | jackson-module-paranamer | 2.6.7 |
com.fasterxml.jackson.module | jackson-module-scala_2.11 | 2.6.7.1 |
com.github.fommil | jniloader | 1.1 |
com.github.fommil.netlib | core | 1.1.2 |
com.github.fommil.netlib | native_ref-java | 1.1 |
com.github.fommil.netlib | native_ref-java-natives | 1.1 |
com.github.fommil.netlib | native_system-java | 1.1 |
com.github.fommil.netlib | native_system-java-natives | 1.1 |
com.github.fommil.netlib | netlib-native_ref-linux-x86_64-natives | 1.1 |
com.github.fommil.netlib | netlib-native_system-linux-x86_64-natives | 1.1 |
com.github.luben | zstd-jni | 1.3.2-2 |
com.github.rwl | jtransforms | 2.4.0 |
com.google.code.findbugs | jsr305 | 2.0.1 |
com.google.code.gson | gson | 2.2.4 |
com.google.guava | guava | 15.0 |
com.google.protobuf | protobuf-java | 2.6.1 |
com.googlecode.javaewah | JavaEWAH | 0.3.2 |
com.h2database | h2 | 1.3.174 |
com.jamesmurty.utils | java-xmlbuilder | 1.1 |
com.jcraft | jsch | 0.1.50 |
com.jolbox | bonecp | 0.8.0.RELEASE |
com.mchange | c3p0 | 0.9.5.1 |
com.mchange | mchange-commons-java | 0.2.10 |
com.microsoft.azure | azure-data-lake-store-sdk | 2.0.11 |
com.microsoft.sqlserver | mssql-jdbc | 6.2.2.jre8 |
com.ning | compress-lzf | 1.0.3 |
com.sun.mail | javax.mail | 1.5.2 |
com.thoughtworks.paranamer | paranamer | 2.8 |
com.trueaccord.lenses | lenses_2.11 | 0.3 |
com.twitter | chill-java | 0.8.4 |
com.twitter | chill_2.11 | 0.8.4 |
com.twitter | parquet-hadoop-bundle | 1.6.0 |
com.twitter | util-app_2.11 | 6.23.0 |
com.twitter | util-core_2.11 | 6.23.0 |
com.twitter | util-jvm_2.11 | 6.23.0 |
com.typesafe | config | 1.2.1 |
com.typesafe.scala-logging | scala-logging-api_2.11 | 2.1.2 |
com.typesafe.scala-logging | scala-logging-slf4j_2.11 | 2.1.2 |
com.univocity | univocity-parsers | 2.5.9 |
com.vlkan | flatbuffers | 1.2.0-3f79e055 |
com.zaxxer | HikariCP | 2.4.1 |
commons-beanutils | commons-beanutils | 1.7.0 |
commons-beanutils | commons-beanutils-core | 1.8.0 |
commons-cli | commons-cli | 1.2 |
commons-codec | commons-codec | 1.10 |
commons-collections | commons-collections | 3.2.2 |
commons-configuration | commons-configuration | 1.6 |
commons-dbcp | commons-dbcp | 1.4 |
commons-digester | commons-digester | 1.8 |
commons-httpclient | commons-httpclient | 3.1 |
commons-io | commons-io | 2.4 |
commons-lang | commons-lang | 2.6 |
commons-logging | commons-logging | 1.1.3 |
commons-net | commons-net | 2.2 |
commons-pool | commons-pool | 1.5.4 |
info.ganglia.gmetric4j | gmetric4j | 1.0.7 |
io.airlift | aircompressor | 0.8 |
io.dropwizard.metrics | metrics-core | 3.1.5 |
io.dropwizard.metrics | metrics-ganglia | 3.1.5 |
io.dropwizard.metrics | metrics-graphite | 3.1.5 |
io.dropwizard.metrics | metrics-healthchecks | 3.1.5 |
io.dropwizard.metrics | metrics-jetty9 | 3.1.5 |
io.dropwizard.metrics | metrics-json | 3.1.5 |
io.dropwizard.metrics | metrics-jvm | 3.1.5 |
io.dropwizard.metrics | metrics-log4j | 3.1.5 |
io.dropwizard.metrics | metrics-servlets | 3.1.5 |
io.netty | netty | 3.9.9.Final |
io.netty | netty-all | 4.1.17.Final |
io.prometheus | simpleclient | 0.0.16 |
io.prometheus | simpleclient_common | 0.0.16 |
io.prometheus | simpleclient_dropwizard | 0.0.16 |
io.prometheus | simpleclient_servlet | 0.0.16 |
io.prometheus.jmx | collector | 0.7 |
javax.activation | activation | 1.1.1 |
javax.annotation | javax.annotation-api | 1.2 |
javax.el | javax.el-api | 2.2.4 |
javax.jdo | jdo-api | 3.0.1 |
javax.servlet | javax.servlet-api | 3.1.0 |
javax.servlet.jsp | jsp-api | 2.1 |
javax.transaction | jta | 1.1 |
javax.validation | validation-api | 1.1.0.Final |
javax.ws.rs | javax.ws.rs-api | 2.0.1 |
javax.xml.bind | jaxb-api | 2.2.2 |
javax.xml.stream | stax-api | 1.0-2 |
javolution | javolution | 5.5.1 |
jline | jline | 2.11 |
joda-time | joda-time | 2.9.3 |
log4j | apache-log4j-extras | 1.2.17 |
log4j | log4j | 1.2.17 |
net.hydromatic | eigenbase-properties | 1.1.5 |
net.iharder | base64 | 2.3.8 |
net.java.dev.jets3t | jets3t | 0.9.4 |
net.razorvine | pyrolite | 4.13 |
net.sf.jpam | jpam | 1.1 |
net.sf.opencsv | opencsv | 2.3 |
net.sf.supercsv | super-csv | 2.2.0 |
net.sourceforge.f2j | arpack_combined_all | 0.1 |
org.acplt | oncrpc | 1.0.7 |
org.antlr | ST4 | 4.0.4 |
org.antlr | antlr-runtime | 3.4 |
org.antlr | antlr4-runtime | 4.7 |
org.antlr | stringtemplate | 3.2.1 |
org.apache.ant | ant | 1.9.2 |
org.apache.ant | ant-jsch | 1.9.2 |
org.apache.ant | ant-launcher | 1.9.2 |
org.apache.arrow | arrow-format | 0.8.0 |
org.apache.arrow | arrow-memory | 0.8.0 |
org.apache.arrow | arrow-vector | 0.8.0 |
org.apache.avro | avro | 1.7.7 |
org.apache.avro | avro-ipc | 1.7.7 |
org.apache.avro | avro-ipc-tests | 1.7.7 |
org.apache.avro | avro-mapred-hadoop2 | 1.7.7 |
org.apache.calcite | calcite-avatica | 1.2.0-incubating |
org.apache.calcite | calcite-core | 1.2.0-incubating |
org.apache.calcite | calcite-linq4j | 1.2.0-incubating |
org.apache.commons | commons-compress | 1.4.1 |
org.apache.commons | commons-crypto | 1.0.0 |
org.apache.commons | commons-lang3 | 3.5 |
org.apache.commons | commons-math3 | 3.4.1 |
org.apache.curator | curator-client | 2.7.1 |
org.apache.curator | curator-framework | 2.7.1 |
org.apache.curator | curator-recipes | 2.7.1 |
org.apache.derby | derby | 10.12.1.1 |
org.apache.directory.api | api-asn1-api | 1.0.0-M20 |
org.apache.directory.api | api-util | 1.0.0-M20 |
org.apache.directory.server | apacheds-i18n | 2.0.0-M15 |
org.apache.directory.server | apacheds-kerberos-codec | 2.0.0-M15 |
org.apache.hadoop | hadoop-annotations | 2.7.3 |
org.apache.hadoop | hadoop-auth | 2.7.3 |
org.apache.hadoop | hadoop-client | 2.7.3 |
org.apache.hadoop | hadoop-common | 2.7.3 |
org.apache.hadoop | hadoop-hdfs | 2.7.3 |
org.apache.hadoop | hadoop-mapreduce-client-app | 2.7.3 |
org.apache.hadoop | hadoop-mapreduce-client-common | 2.7.3 |
org.apache.hadoop | hadoop-mapreduce-client-core | 2.7.3 |
org.apache.hadoop | hadoop-mapreduce-client-jobclient | 2.7.3 |
org.apache.hadoop | hadoop-mapreduce-client-shuffle | 2.7.3 |
org.apache.hadoop | hadoop-yarn-api | 2.7.3 |
org.apache.hadoop | hadoop-yarn-client | 2.7.3 |
org.apache.hadoop | hadoop-yarn-common | 2.7.3 |
org.apache.hadoop | hadoop-yarn-server-common | 2.7.3 |
org.apache.htrace | htrace-core | 3.1.0-incubating |
org.apache.httpcomponents | httpclient | 4.5.4 |
org.apache.httpcomponents | httpcore | 4.4.8 |
org.apache.ivy | ivy | 2.4.0 |
org.apache.orc | orc-core-nohive | 1.4.1 |
org.apache.orc | orc-mapreduce-nohive | 1.4.1 |
org.apache.parquet | parquet-column | 1.8.2-databricks1 |
org.apache.parquet | parquet-common | 1.8.2-databricks1 |
org.apache.parquet | parquet-encoding | 1.8.2-databricks1 |
org.apache.parquet | parquet-format | 2.3.1 |
org.apache.parquet | parquet-hadoop | 1.8.2-databricks1 |
org.apache.parquet | parquet-jackson | 1.8.2-databricks1 |
org.apache.thrift | libfb303 | 0.9.3 |
org.apache.thrift | libthrift | 0.9.3 |
org.apache.xbean | xbean-asm5-shaded | 4.4 |
org.apache.zookeeper | zookeeper | 3.4.6 |
org.bouncycastle | bcprov-jdk15on | 1.58 |
org.codehaus.jackson | jackson-core-asl | 1.9.13 |
org.codehaus.jackson | jackson-jaxrs | 1.9.13 |
org.codehaus.jackson | jackson-mapper-asl | 1.9.13 |
org.codehaus.jackson | jackson-xc | 1.9.13 |
org.codehaus.janino | commons-compiler | 3.0.8 |
org.codehaus.janino | janino | 3.0.8 |
org.datanucleus | datanucleus-api-jdo | 3.2.6 |
org.datanucleus | datanucleus-core | 3.2.10 |
org.datanucleus | datanucleus-rdbms | 3.2.9 |
org.eclipse.jetty | jetty-client | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-continuation | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-http | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-io | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-jndi | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-plus | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-proxy | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-security | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-server | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-servlet | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-servlets | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-util | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-webapp | 9.3.20.v20170531 |
org.eclipse.jetty | jetty-xml | 9.3.20.v20170531 |
org.fusesource.leveldbjni | leveldbjni-all | 1.8 |
org.glassfish.hk2 | hk2-api | 2.4.0-b34 |
org.glassfish.hk2 | hk2-locator | 2.4.0-b34 |
org.glassfish.hk2 | hk2-utils | 2.4.0-b34 |
org.glassfish.hk2 | osgi-resource-locator | 1.0.1 |
org.glassfish.hk2.external | aopalliance-repackaged | 2.4.0-b34 |
org.glassfish.hk2.external | javax.inject | 2.4.0-b34 |
org.glassfish.jersey.bundles.repackaged | jersey-guava | 2.22.2 |
org.glassfish.jersey.containers | jersey-container-servlet | 2.22.2 |
org.glassfish.jersey.containers | jersey-container-servlet-core | 2.22.2 |
org.glassfish.jersey.core | jersey-client | 2.22.2 |
org.glassfish.jersey.core | jersey-common | 2.22.2 |
org.glassfish.jersey.core | jersey-server | 2.22.2 |
org.glassfish.jersey.media | jersey-media-jaxb | 2.22.2 |
org.hibernate | hibernate-validator | 5.1.1.Final |
org.iq80.snappy | snappy | 0.2 |
org.javassist | javassist | 3.18.1-GA |
org.jboss.logging | jboss-logging | 3.1.3.GA |
org.jdbi | jdbi | 2.63.1 |
org.joda | joda-convert | 1.7 |
org.jodd | jodd-core | 3.5.2 |
org.json4s | json4s-ast_2.11 | 3.2.11 |
org.json4s | json4s-core_2.11 | 3.2.11 |
org.json4s | json4s-jackson_2.11 | 3.2.11 |
org.lz4 | lz4-java | 1.4.0 |
org.mariadb.jdbc | mariadb-java-client | 2.1.2 |
org.mockito | mockito-all | 1.9.5 |
org.objenesis | objenesis | 2.1 |
org.postgresql | postgresql | 42.1.4 |
org.roaringbitmap | RoaringBitmap | 0.5.11 |
org.rocksdb | rocksdbjni | 5.2.1 |
org.rosuda.REngine | REngine | 2.1.0 |
org.scala-lang | scala-compiler_2.11 | 2.11.8 |
org.scala-lang | scala-library_2.11 | 2.11.8 |
org.scala-lang | scala-reflect_2.11 | 2.11.8 |
org.scala-lang | scalap_2.11 | 2.11.8 |
org.scala-lang.modules | scala-parser-combinators_2.11 | 1.0.2 |
org.scala-lang.modules | scala-xml_2.11 | 1.0.5 |
org.scala-sbt | test-interface | 1.0 |
org.scalacheck | scalacheck_2.11 | 1.12.5 |
org.scalanlp | breeze-macros_2.11 | 0.13.2 |
org.scalanlp | breeze_2.11 | 0.13.2 |
org.scalatest | scalatest_2.11 | 2.2.6 |
org.slf4j | jcl-over-slf4j | 1.7.16 |
org.slf4j | jul-to-slf4j | 1.7.16 |
org.slf4j | slf4j-api | 1.7.16 |
org.slf4j | slf4j-log4j12 | 1.7.16 |
org.spark-project.hive | hive-beeline | 1.2.1.spark2 |
org.spark-project.hive | hive-cli | 1.2.1.spark2 |
org.spark-project.hive | hive-exec | 1.2.1.spark2 |
org.spark-project.hive | hive-jdbc | 1.2.1.spark2 |
org.spark-project.hive | hive-metastore | 1.2.1.spark2 |
org.spark-project.spark | unused | 1.0.0 |
org.spire-math | spire-macros_2.11 | 0.13.0 |
org.spire-math | spire_2.11 | 0.13.0 |
org.springframework | spring-core | 4.1.4.RELEASE |
org.springframework | spring-test | 4.1.4.RELEASE |
org.tukaani | xz | 1.0 |
org.typelevel | machinist_2.11 | 0.6.1 |
org.typelevel | macro-compat_2.11 | 1.1.1 |
org.xerial | sqlite-jdbc | 3.8.11.2 |
org.xerial.snappy | snappy-java | 1.1.2.6 |
org.yaml | snakeyaml | 1.16 |
oro | oro | 2.0.8 |
software.amazon.ion | ion-java | 1.0.2 |
stax | stax-api | 1.0.1 |
xmlenc | xmlenc | 0.52 |