Azure Machine Learning datastores do not create the underlying storage account resources. Instead, they link an existing storage account for Azure Machine Learning use. Azure Machine Learning datastores are not required for this. If you have access to the underlying data, you can use storage URIs directly.
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="",
description="",
account_name="",
container_name=""
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml.entities import AccountKeyConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="blob_protocol_example",
description="Datastore pointing to a blob container using https protocol.",
account_name="mytestblobstore",
container_name="data-container",
protocol="https",
credentials=AccountKeyConfiguration(
account_key="XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
),
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml.entities import SasTokenConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="blob_sas_example",
description="Datastore pointing to a blob container using SAS token.",
account_name="mytestblobstore",
container_name="data-container",
credentials=SasTokenConfiguration(
sas_token= "?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
),
)
ml_client.create_or_update(store)
Create the following YAML file (be sure to update the appropriate values):
# my_blob_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json
name: my_blob_ds # add your datastore name here
type: azure_blob
description: here is a description # add a datastore description here
account_name: my_account_name # add the storage account name here
container_name: my_container_name # add the storage container name here
Create the Azure Machine Learning datastore in the CLI:
az ml datastore create --file my_blob_datastore.yml
Create the following YAML file (be sure to update the appropriate values):
from azure.ai.ml.entities import AzureDataLakeGen2Datastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen2Datastore(
name="",
description="",
account_name="",
filesystem=""
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureDataLakeGen2Datastore
from azure.ai.ml.entities._datastore.credentials import ServicePrincipalCredentials
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen2Datastore(
name="adls_gen2_example",
description="Datastore pointing to an Azure Data Lake Storage Gen2.",
account_name="mytestdatalakegen2",
filesystem="my-gen2-container",
credentials=ServicePrincipalCredentials(
tenant_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_secret= "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
),
)
ml_client.create_or_update(store)
Create the following YAML file (updating the values):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen2.schema.json
name: adls_gen2_credless_example
type: azure_data_lake_gen2
description: Credential-less datastore pointing to an Azure Data Lake Storage Gen2.
account_name: mytestdatalakegen2
filesystem: my-gen2-container
Create the Azure Machine Learning datastore in the CLI:
az ml datastore create --file my_adls_datastore.yml
Create the following YAML file (updating the values):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen2.schema.json
name: adls_gen2_example
type: azure_data_lake_gen2
description: Datastore pointing to an Azure Data Lake Storage Gen2.
account_name: mytestdatalakegen2
filesystem: my-gen2-container
credentials:
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_secret: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Create the Azure Machine Learning datastore in the CLI:
az ml datastore create --file my_adls_datastore.yml
from azure.ai.ml.entities import AzureFileDatastore
from azure.ai.ml.entities import AccountKeyConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureFileDatastore(
name="file_example",
description="Datastore pointing to an Azure File Share.",
account_name="mytestfilestore",
file_share_name="my-share",
credentials=AccountKeyConfiguration(
account_key= "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
),
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureFileDatastore
from azure.ai.ml.entities import SasTokenConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureFileDatastore(
name="file_sas_example",
description="Datastore pointing to an Azure File Share using SAS token.",
account_name="mytestfilestore",
file_share_name="my-share",
credentials=SasTokenConfiguration(
sas_token="?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
),
)
ml_client.create_or_update(store)
Create the following YAML file (updating the values):
from azure.ai.ml.entities import AzureDataLakeGen1Datastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen1Datastore(
name="",
store_name="",
description="",
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureDataLakeGen1Datastore
from azure.ai.ml.entities._datastore.credentials import ServicePrincipalCredentials
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen1Datastore(
name="adls_gen1_example",
description="Datastore pointing to an Azure Data Lake Storage Gen1.",
store_name="mytestdatalakegen1",
credentials=ServicePrincipalCredentials(
tenant_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_secret= "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
),
)
ml_client.create_or_update(store)
Create the following YAML file (updating the values):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json
name: alds_gen1_credless_example
type: azure_data_lake_gen1
description: Credential-less datastore pointing to an Azure Data Lake Storage Gen1.
store_name: mytestdatalakegen1
Create the Azure Machine Learning datastore in the CLI:
az ml datastore create --file my_adls_datastore.yml
Create the following YAML file (updating the values):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json
name: adls_gen1_example
type: azure_data_lake_gen1
description: Datastore pointing to an Azure Data Lake Storage Gen1.
store_name: mytestdatalakegen1
credentials:
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_secret: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Create the Azure Machine Learning datastore in the CLI:
az ml datastore create --file my_adls_datastore.yml