CLI (v2) OneLake connection YAML schema
APPLIES TO: Azure CLI ml extension v2 (current)
Note
The YAML syntax detailed in this document is based on the JSON schema for the latest version of the ML CLI v2 extension. This syntax is guaranteed only to work with the latest version of the ML CLI v2 extension. You can find the schemas for older extension versions at https://azuremlschemasprod.azureedge.net/.
YAML syntax
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
$schema |
string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, include $schema at the top of your file to invoke schema and resource completions. |
||
name |
string | Required. The connection name. | ||
description |
string | The connection description. | ||
tags |
object | The connection tag dictionary. | ||
type |
string | Required. The connection type. | one_lake |
one_lake |
is_shared |
boolean | true if the connection is shared across other projects in the hub; otherwise, false . |
true |
|
one_lake_artifact |
object | Artifact. | ||
one_lake_artifact.type |
string | The Microsoft OneLake artifact type. | lake_house |
lake_house |
one_lake_artifact.workspace_id |
string | Required. The workspace name or GUID. | ||
one_lake_artifact.name |
string | Required. The Microsoft OneLake artifact name or GUID. | ||
one_lake_artifact.endpoint |
string | Required. The endpoint from the artifact. | ||
credentials |
object | Credential-based authentication to access Microsoft OneLake. A service principal can be used. Don't specify credentials when using credential-less authentication, set to None . |
||
credentials.type |
string | The type of credential. | service_principal |
|
credentials.client_id |
string | Microsoft Entra ID application ID. | ||
credentials.client_secret |
string | Secret or key. | ||
credentials.tenant_id |
string | Microsoft Entra ID tenant ID. |
Remarks
While the az ml connection
commands can be used to manage both Azure Machine Learning and Azure AI Studio connections, the Microsoft OneLake connection is specific to Azure AI Studio.
Examples
These examples would be in the form of YAML files and used from the CLI. For example, az ml connection create -f <file-name>.yaml
.
YAML: service principal
#MicrosoftOneLakeConnection.yml
name: myonelake_sp
type: one_lake
one_lake_artifact:
type: lake_house
name: "XXXXXXXXXX"
workspace_id: "XXXXXXXXXX"
endpoint: contoso-onelake.dfs.fabric.microsoft.com
credentials:
type: service_principal
tenant_id: "XXXXXXXXXX"
client_id: "XXXXXXXXXX"
client_secret: "XXXXXXXXXX"
YAML: credential-less
#MicrosoftOneLakeConnection.yml
name: myonelake_cl
type: one_lake
one_lake_artifact:
type: lake_house
name: "XXXXXXXXXX"
workspace_id: "XXXXXXXXXX"
endpoint: contoso-onelake.dfs.fabric.microsoft.com