CLI (v2) feature store YAML schema

APPLIES TO: Azure CLI ml extension v2 (current)

Note

The YAML syntax detailed in this document is based on the JSON schema for the latest version of the ML CLI v2 extension. This syntax is guaranteed only to work with the latest version of the ML CLI v2 extension. You can find the schemas for older extension versions at https://azuremlschemasprod.azureedge.net/.

YAML syntax

Key Type Description Allowed values Default value
$schema string The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including $schema at the top of your file enables you to invoke schema and resource completions.
name string Required. Name of the feature store.
compute_runtime object The compute runtime configuration used for materialization job.
compute_runtime.spark_runtime_version string The Azure Machine Learning Spark runtime version. 3.4 3.4
offline_store object
offline_store.type string Required if offline_store is provided. The type of offline store. Only data lake gen2 type of storage is supported. azure_data_lake_gen2
offline_store.target string Required if offline_store is provided. The datalake Gen2 storage URI in the format of /subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.Storage/storageAccounts/<account>/blobServices/default/containers/<container>.
online_store object
online_store.type string Required if online_store is provided. The type of online store. Only redis cache is supported. redis
online_store.target string Required if online_store is provided. The Redis Cache URI in the format of /subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.Cache/Redis/<redis-name>.
materialization_identity object The user-assigned managed identity that used for the materialization job. This identity needs to be granted necessary roles to access Feature Store service, the data source, and the offline storage.
materialization_identity.client_id string The client ID for your user-assigned managed identity.
materialization_identity.resource_id string The resource ID for your user-assigned managed identity.
materialization_identity.principal_id string the principal ID for your user-assigned managed identity.
description string Description of the feature store.
tags object Dictionary of tags for the feature store.
display_name string Display name of the feature store in the studio UI. Can be nonunique within the resource group.
location string The location of the feature store. The resource group location.
resource_group string The resource group containing the feature store. If the resource group doesn't exist, a new one is created.

You can include other workspace properties.

Remarks

The az ml feature-store command can be used for managing Azure Machine Learning feature store workspaces.

Examples

Examples are available in the examples GitHub repository. Some common examples are shown here:

YAML basic

$schema: http://azureml/sdk-2-0/FeatureStore.json
name: mktg-feature-store
location: eastus

YAML with offline store configuration

$schema: http://azureml/sdk-2-0/FeatureStore.json
name: mktg-feature-store

compute_runtime:
    spark_runtime_version: 3.2

offline_store:
    type: azure_data_lake_gen2
    target: /subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.Storage/storageAccounts/<account_name>/blobServices/default/containers/<container_name>

materialization_identity:
    client_id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
    resource_id: /subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.ManagedIdentity/userAssignedIdentities/<uai-name>

# Many of workspace parameters will also be supported:
location: eastus
display_name: marketing feature store
tags:
  foo: bar

Configure the online store in the CLI with YAML

$schema: http://azureml/sdk-2-0/FeatureStore.json
name: mktg-feature-store

compute_runtime:
  spark_runtime_version: 3.4

online_store:
  type: redis
  target: "/subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.Cache/Redis/<redis-name>"

materialization_identity:
  client_id: 00001111-aaaa-2222-bbbb-3333cccc4444
  principal_id: aaaaaaaa-bbbb-cccc-1111-222222222222
  resource_id: /subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.ManagedIdentity/userAssignedIdentities/<uai-name>

# Many of workspace parameters will also be supported:
location: eastus
display_name: marketing feature store
tags:
  foo: bar

Configure the online store in the CLI with Python

redis_arm_id = f"/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}/providers/Microsoft.Cache/Redis/{redis_name}"
online_store = MaterializationStore(type="redis", target=redis_arm_id)
 
fs = FeatureStore(
    name=featurestore_name,
    location=location,
    online_store=online_store,
)
 
# wait for feature store creation
fs_poller = ml_client.feature_stores.begin_create(fs)

# move the feature store to a YAML file

yaml_path = root_dir + "/featurestore/featurestore_with_online.yaml"
fs.dump(yaml_path)

Next steps