OData expression syntax reference for Azure AI Search
Azure AI Search uses OData expressions as parameters throughout the API. Most commonly, OData expressions are used for the $orderby
and $filter
parameters. These expressions can be complex, containing multiple clauses, functions, and operators. However, even simple OData expressions like property paths are used in many parts of the Azure AI Search REST API. For example, path expressions are used to refer to subfields of complex fields everywhere in the API, such as when listing subfields in a suggester, a scoring function, the $select
parameter, or even fielded search in Lucene queries.
This article describes all these forms of OData expressions using a formal grammar. There is also an interactive diagram to help visually explore the grammar.
Formal grammar
We can describe the subset of the OData language supported by Azure AI Search using an EBNF (Extended Backus-Naur Form) grammar. Rules are listed "top-down", starting with the most complex expressions, and breaking them down into more primitive expressions. At the top are the grammar rules that correspond to specific parameters of the Azure AI Search REST API:
$filter
, defined by thefilter_expression
rule.$orderby
, defined by theorder_by_expression
rule.$select
, defined by theselect_expression
rule.- Field paths, defined by the
field_path
rule. Field paths are used throughout the API. They can refer to either top-level fields of an index, or subfields with one or more complex field ancestors.
After the EBNF is a browsable syntax diagram that allows you to interactively explore the grammar and the relationships between its rules.
/* Top-level rules */
filter_expression ::= boolean_expression
order_by_expression ::= order_by_clause(',' order_by_clause)*
select_expression ::= '*' | field_path(',' field_path)*
field_path ::= identifier('/'identifier)*
/* Shared base rules */
identifier ::= [a-zA-Z_][a-zA-Z_0-9]*
/* Rules for $orderby */
order_by_clause ::= (field_path | sortable_function) ('asc' | 'desc')?
sortable_function ::= geo_distance_call | 'search.score()'
/* Rules for $filter */
boolean_expression ::=
collection_filter_expression
| logical_expression
| comparison_expression
| boolean_literal
| boolean_function_call
| '(' boolean_expression ')'
| variable
/* This can be a range variable in the case of a lambda, or a field path. */
variable ::= identifier | field_path
collection_filter_expression ::=
field_path'/all(' lambda_expression ')'
| field_path'/any(' lambda_expression ')'
| field_path'/any()'
lambda_expression ::= identifier ':' boolean_expression
logical_expression ::=
boolean_expression ('and' | 'or') boolean_expression
| 'not' boolean_expression
comparison_expression ::=
variable_or_function comparison_operator constant |
constant comparison_operator variable_or_function
variable_or_function ::= variable | function_call
comparison_operator ::= 'gt' | 'lt' | 'ge' | 'le' | 'eq' | 'ne'
/* Rules for constants and literals */
constant ::=
string_literal
| date_time_offset_literal
| integer_literal
| float_literal
| boolean_literal
| 'null'
string_literal ::= "'"([^'] | "''")*"'"
date_time_offset_literal ::= date_part'T'time_part time_zone
date_part ::= year'-'month'-'day
time_part ::= hour':'minute(':'second('.'fractional_seconds)?)?
zero_to_fifty_nine ::= [0-5]digit
digit ::= [0-9]
year ::= digit digit digit digit
month ::= '0'[1-9] | '1'[0-2]
day ::= '0'[1-9] | [1-2]digit | '3'[0-1]
hour ::= [0-1]digit | '2'[0-3]
minute ::= zero_to_fifty_nine
second ::= zero_to_fifty_nine
fractional_seconds ::= integer_literal
time_zone ::= 'Z' | sign hour':'minute
sign ::= '+' | '-'
/* In practice integer literals are limited in length to the precision of
the corresponding EDM data type. */
integer_literal ::= sign? digit+
float_literal ::=
sign? whole_part fractional_part? exponent?
| 'NaN'
| '-INF'
| 'INF'
whole_part ::= integer_literal
fractional_part ::= '.'integer_literal
exponent ::= 'e' sign? integer_literal
boolean_literal ::= 'true' | 'false'
/* Rules for functions */
function_call ::=
geo_distance_call |
boolean_function_call
geo_distance_call ::=
'geo.distance(' variable ',' geo_point ')'
| 'geo.distance(' geo_point ',' variable ')'
geo_point ::= "geography'POINT(" lon_lat ")'"
lon_lat ::= float_literal ' ' float_literal
boolean_function_call ::=
geo_intersects_call |
search_in_call |
search_is_match_call
geo_intersects_call ::=
'geo.intersects(' variable ',' geo_polygon ')'
/* You need at least four points to form a polygon, where the first and
last points are the same. */
geo_polygon ::=
"geography'POLYGON((" lon_lat ',' lon_lat ',' lon_lat ',' lon_lat_list "))'"
lon_lat_list ::= lon_lat(',' lon_lat)*
search_in_call ::=
'search.in(' variable ',' string_literal(',' string_literal)? ')'
/* Note that it is illegal to call search.ismatch or search.ismatchscoring
from inside a lambda expression. */
search_is_match_call ::=
'search.ismatch'('scoring')?'(' search_is_match_parameters ')'
search_is_match_parameters ::=
string_literal(',' string_literal(',' query_type ',' search_mode)?)?
query_type ::= "'full'" | "'simple'"
search_mode ::= "'any'" | "'all'"
Syntax diagram
To visually explore the OData language grammar supported by Azure AI Search, try the interactive syntax diagram: