__cpuid, __cpuidex
Microsoft Specific
Generates the cpuid
instruction that is available on x86 and x64. This instruction queries the processor for information about supported features and the CPU type.
Syntax
void __cpuid(
int cpuInfo[4],
int function_id
);
void __cpuidex(
int cpuInfo[4],
int function_id,
int subfunction_id
);
Parameters
cpuInfo
[out] An array of four integers that contains the information returned in EAX, EBX, ECX, and EDX about supported features of the CPU.
function_id
[in] A code that specifies the information to retrieve, passed in EAX.
subfunction_id
[in] An additional code that specifies information to retrieve, passed in ECX.
Requirements
Intrinsic | Architecture |
---|---|
__cpuid |
x86, x64 |
__cpuidex |
x86, x64 |
Header file <intrin.h>
Remarks
This intrinsic stores the supported features and CPU information returned by the cpuid
instruction in cpuInfo, an array of four 32-bit integers that's filled with the values of the EAX, EBX, ECX, and EDX registers (in that order). The information returned has a different meaning depending on the value passed as the function_id parameter. The information returned with various values of function_id is processor-dependent.
The __cpuid
intrinsic clears the ECX register before calling the cpuid
instruction. The __cpuidex
intrinsic sets the value of the ECX register to subfunction_id before it generates the cpuid
instruction. It enables you to gather additional information about the processor.
For more information about the specific parameters to use and the values returned by these intrinsics on Intel processors, see the documentation for the cpuid
instruction in Intel 64 and IA-32 Architectures Software Developers Manual Volume 2: Instruction Set Reference and Intel Architecture Instruction Set Extensions Programming Reference. Intel documentation uses the terms "leaf" and "subleaf" for the function_id and subfunction_id parameters passed in EAX and ECX.
For more information about the specific parameters to use and the values returned by these intrinsics on AMD processors, see the documentation for the cpuid
instruction in AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions, and in the Revision Guides for specific processor families. For links to these documents and other information, see the AMD Developer Guides, Manuals & ISA Documents page. AMD documentation uses the terms "function number" and "subfunction number" for the function_id and subfunction_id parameters passed in EAX and ECX.
When the function_id argument is 0, cpuInfo[0] returns the highest available non-extended function_id value supported by the processor. The processor manufacturer is encoded in cpuInfo[1], cpuInfo[2], and cpuInfo[3].
Support for specific instruction set extensions and CPU features is encoded in the cpuInfo results returned for higher function_id values. For more information, see the manuals linked above, and the following example code.
Some processors support Extended Function CPUID information. When it's supported, function_id values from 0x80000000 might be used to return information. To determine the maximum meaningful value allowed, set function_id to 0x80000000. The maximum value of function_id supported for extended functions will be written to cpuInfo[0].
Example
This example shows some of the information available through the __cpuid
and __cpuidex
intrinsics. The app lists the instruction set extensions supported by the current processor. The output shows a possible result for a particular processor.
// InstructionSet.cpp
// Compile by using: cl /EHsc /W4 InstructionSet.cpp
// processor: x86, x64
// Uses the __cpuid intrinsic to get information about
// CPU extended instruction set support.
#include <iostream>
#include <vector>
#include <bitset>
#include <array>
#include <string>
#include <intrin.h>
class InstructionSet
{
// forward declarations
class InstructionSet_Internal;
public:
// getters
static std::string Vendor(void) { return CPU_Rep.vendor_; }
static std::string Brand(void) { return CPU_Rep.brand_; }
static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; }
static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; }
static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; }
static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; }
static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; }
static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; }
static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; }
static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; }
static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; }
static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; }
static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; }
static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; }
static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; }
static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; }
static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; }
static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; }
static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; }
static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; }
static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; }
static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; }
static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; }
static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; }
static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; }
static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; }
static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; }
static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; }
static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; }
static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; }
static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; }
static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; }
static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; }
static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; }
static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; }
static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; }
static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; }
static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; }
static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; }
static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; }
static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; }
static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; }
static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; }
static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; }
static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; }
static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; }
static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; }
static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; }
static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; }
static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; }
static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; }
static bool RDTSCP(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[27]; }
static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; }
static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; }
private:
static const InstructionSet_Internal CPU_Rep;
class InstructionSet_Internal
{
public:
InstructionSet_Internal()
: nIds_{ 0 },
nExIds_{ 0 },
isIntel_{ false },
isAMD_{ false },
f_1_ECX_{ 0 },
f_1_EDX_{ 0 },
f_7_EBX_{ 0 },
f_7_ECX_{ 0 },
f_81_ECX_{ 0 },
f_81_EDX_{ 0 },
data_{},
extdata_{}
{
//int cpuInfo[4] = {-1};
std::array<int, 4> cpui;
// Calling __cpuid with 0x0 as the function_id argument
// gets the number of the highest valid function ID.
__cpuid(cpui.data(), 0);
nIds_ = cpui[0];
for (int i = 0; i <= nIds_; ++i)
{
__cpuidex(cpui.data(), i, 0);
data_.push_back(cpui);
}
// Capture vendor string
char vendor[0x20];
memset(vendor, 0, sizeof(vendor));
*reinterpret_cast<int*>(vendor) = data_[0][1];
*reinterpret_cast<int*>(vendor + 4) = data_[0][3];
*reinterpret_cast<int*>(vendor + 8) = data_[0][2];
vendor_ = vendor;
if (vendor_ == "GenuineIntel")
{
isIntel_ = true;
}
else if (vendor_ == "AuthenticAMD")
{
isAMD_ = true;
}
// load bitset with flags for function 0x00000001
if (nIds_ >= 1)
{
f_1_ECX_ = data_[1][2];
f_1_EDX_ = data_[1][3];
}
// load bitset with flags for function 0x00000007
if (nIds_ >= 7)
{
f_7_EBX_ = data_[7][1];
f_7_ECX_ = data_[7][2];
}
// Calling __cpuid with 0x80000000 as the function_id argument
// gets the number of the highest valid extended ID.
__cpuid(cpui.data(), 0x80000000);
nExIds_ = cpui[0];
char brand[0x40];
memset(brand, 0, sizeof(brand));
for (int i = 0x80000000; i <= nExIds_; ++i)
{
__cpuidex(cpui.data(), i, 0);
extdata_.push_back(cpui);
}
// load bitset with flags for function 0x80000001
if (nExIds_ >= 0x80000001)
{
f_81_ECX_ = extdata_[1][2];
f_81_EDX_ = extdata_[1][3];
}
// Interpret CPU brand string if reported
if (nExIds_ >= 0x80000004)
{
memcpy(brand, extdata_[2].data(), sizeof(cpui));
memcpy(brand + 16, extdata_[3].data(), sizeof(cpui));
memcpy(brand + 32, extdata_[4].data(), sizeof(cpui));
brand_ = brand;
}
};
int nIds_;
int nExIds_;
std::string vendor_;
std::string brand_;
bool isIntel_;
bool isAMD_;
std::bitset<32> f_1_ECX_;
std::bitset<32> f_1_EDX_;
std::bitset<32> f_7_EBX_;
std::bitset<32> f_7_ECX_;
std::bitset<32> f_81_ECX_;
std::bitset<32> f_81_EDX_;
std::vector<std::array<int, 4>> data_;
std::vector<std::array<int, 4>> extdata_;
};
};
// Initialize static member data
const InstructionSet::InstructionSet_Internal InstructionSet::CPU_Rep;
// Print out supported instruction set extensions
int main()
{
auto& outstream = std::cout;
auto support_message = [&outstream](std::string isa_feature, bool is_supported) {
outstream << isa_feature << (is_supported ? " supported" : " not supported") << std::endl;
};
std::cout << InstructionSet::Vendor() << std::endl;
std::cout << InstructionSet::Brand() << std::endl;
support_message("3DNOW", InstructionSet::_3DNOW());
support_message("3DNOWEXT", InstructionSet::_3DNOWEXT());
support_message("ABM", InstructionSet::ABM());
support_message("ADX", InstructionSet::ADX());
support_message("AES", InstructionSet::AES());
support_message("AVX", InstructionSet::AVX());
support_message("AVX2", InstructionSet::AVX2());
support_message("AVX512CD", InstructionSet::AVX512CD());
support_message("AVX512ER", InstructionSet::AVX512ER());
support_message("AVX512F", InstructionSet::AVX512F());
support_message("AVX512PF", InstructionSet::AVX512PF());
support_message("BMI1", InstructionSet::BMI1());
support_message("BMI2", InstructionSet::BMI2());
support_message("CLFSH", InstructionSet::CLFSH());
support_message("CMPXCHG16B", InstructionSet::CMPXCHG16B());
support_message("CX8", InstructionSet::CX8());
support_message("ERMS", InstructionSet::ERMS());
support_message("F16C", InstructionSet::F16C());
support_message("FMA", InstructionSet::FMA());
support_message("FSGSBASE", InstructionSet::FSGSBASE());
support_message("FXSR", InstructionSet::FXSR());
support_message("HLE", InstructionSet::HLE());
support_message("INVPCID", InstructionSet::INVPCID());
support_message("LAHF", InstructionSet::LAHF());
support_message("LZCNT", InstructionSet::LZCNT());
support_message("MMX", InstructionSet::MMX());
support_message("MMXEXT", InstructionSet::MMXEXT());
support_message("MONITOR", InstructionSet::MONITOR());
support_message("MOVBE", InstructionSet::MOVBE());
support_message("MSR", InstructionSet::MSR());
support_message("OSXSAVE", InstructionSet::OSXSAVE());
support_message("PCLMULQDQ", InstructionSet::PCLMULQDQ());
support_message("POPCNT", InstructionSet::POPCNT());
support_message("PREFETCHWT1", InstructionSet::PREFETCHWT1());
support_message("RDRAND", InstructionSet::RDRAND());
support_message("RDSEED", InstructionSet::RDSEED());
support_message("RDTSCP", InstructionSet::RDTSCP());
support_message("RTM", InstructionSet::RTM());
support_message("SEP", InstructionSet::SEP());
support_message("SHA", InstructionSet::SHA());
support_message("SSE", InstructionSet::SSE());
support_message("SSE2", InstructionSet::SSE2());
support_message("SSE3", InstructionSet::SSE3());
support_message("SSE4.1", InstructionSet::SSE41());
support_message("SSE4.2", InstructionSet::SSE42());
support_message("SSE4a", InstructionSet::SSE4a());
support_message("SSSE3", InstructionSet::SSSE3());
support_message("SYSCALL", InstructionSet::SYSCALL());
support_message("TBM", InstructionSet::TBM());
support_message("XOP", InstructionSet::XOP());
support_message("XSAVE", InstructionSet::XSAVE());
}
GenuineIntel
Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
3DNOW not supported
3DNOWEXT not supported
ABM not supported
ADX not supported
AES supported
AVX supported
AVX2 not supported
AVX512CD not supported
AVX512ER not supported
AVX512F not supported
AVX512PF not supported
BMI1 not supported
BMI2 not supported
CLFSH supported
CMPXCHG16B supported
CX8 supported
ERMS not supported
F16C not supported
FMA not supported
FSGSBASE not supported
FXSR supported
HLE not supported
INVPCID not supported
LAHF supported
LZCNT not supported
MMX supported
MMXEXT not supported
MONITOR not supported
MOVBE not supported
MSR supported
OSXSAVE supported
PCLMULQDQ supported
POPCNT supported
PREFETCHWT1 not supported
RDRAND not supported
RDSEED not supported
RDTSCP supported
RTM not supported
SEP supported
SHA not supported
SSE supported
SSE2 supported
SSE3 supported
SSE4.1 supported
SSE4.2 supported
SSE4a not supported
SSSE3 supported
SYSCALL supported
TBM not supported
XOP not supported
XSAVE supported
END Microsoft Specific