Microsoft.ML.Transforms Namespace
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Namespace containing data transformation components.
Classes
ApproximatedKernelMappingEstimator |
Maps vector columns to a low -dimensional feature space. |
ApproximatedKernelTransformer |
ITransformer resulting from fitting an ApproximatedKernelMappingEstimator. |
ColumnConcatenatingEstimator |
Concatenates one or more input columns into a new output column. |
ColumnCopyingEstimator | |
ColumnCopyingTransformer |
ITransformer resulting from fitting a ColumnCopyingEstimator. |
ColumnSelectingEstimator |
Keeps or drops selected columns from an IDataView. |
ColumnSelectingTransformer |
ITransformer resulting from fitting an ColumnSelectingEstimator. |
CountFeatureSelectingEstimator |
Selects the slots for which the count of non-default values is greater than or equal to a threshold. |
CustomMappingEstimator<TSrc,TDst> |
Applies a custom mapping function to the specified input columns. The result will be in output columns. |
CustomMappingFactory<TSrc,TDst> |
The base type for custom mapping factories. |
CustomMappingFactoryAttributeAttribute |
Place this attribute onto a type to cause it to be considered a custom mapping factory. |
CustomMappingTransformer<TSrc,TDst> |
ITransformer resulting from fitting an CustomMappingEstimator<TSrc,TDst>. |
ExpressionEstimator |
This estimator applies a user provided expression (specified as a string) to input column values to produce new output column values. |
ExpressionTransformer | |
FeatureContributionCalculatingEstimator |
Estimator for FeatureContributionCalculatingTransformer. Computes model-specific per-feature contributions to the score of each input vector. |
FeatureContributionCalculatingTransformer |
ITransformer resulting from fitting a FeatureContributionCalculatingEstimator. |
GaussianKernel |
The Gaussian kernel. |
GlobalContrastNormalizingEstimator |
Normalizes (scales) vectors in the input column applying the global contrast normalization. |
HashingEstimator |
Estimator for HashingTransformer, which hashes either single valued columns or vector columns. For vector columns, it hashes each slot separately. |
HashingEstimator.ColumnOptions |
Describes how the transformer handles one column pair. |
HashingTransformer |
ITransformer resulting from fitting a HashingEstimator. |
KernelBase |
This class indicates which kernel should be approximated by the ApproximatedKernelTransformer. . |
KeyToBinaryVectorMappingEstimator |
Estimator for KeyToBinaryVectorMappingTransformer. Converts key types to their corresponding binary representation of the original value. |
KeyToBinaryVectorMappingTransformer |
ITransformer resulting from fitting a KeyToBinaryVectorMappingEstimator. |
KeyToValueMappingEstimator |
Estimator for KeyToValueMappingTransformer. Converts the key types back to their original values. |
KeyToValueMappingTransformer |
ITransformer resulting from fitting a KeyToValueMappingEstimator. |
KeyToVectorMappingEstimator |
Estimator for KeyToVectorMappingTransformer. Maps the value of a key into a known-sized vector of Single. |
KeyToVectorMappingTransformer |
ITransformer resulting from fitting a KeyToVectorMappingEstimator. |
LaplacianKernel |
The Laplacian kernel. |
LpNormNormalizingEstimator |
Normalizes (scales) vectors in the input column to the unit norm. The type of norm that is used can be specified by the user. |
LpNormNormalizingEstimatorBase |
Base estimator class for LpNormNormalizingEstimator and GlobalContrastNormalizingEstimator normalizers. |
LpNormNormalizingTransformer |
ITransformer resulting from fitting a LpNormNormalizingEstimator or GlobalContrastNormalizingEstimator. |
MissingValueIndicatorEstimator |
IEstimator<TTransformer> for the MissingValueIndicatorTransformer. |
MissingValueIndicatorTransformer |
ITransformer resulting from fitting a MissingValueIndicatorEstimator. |
MissingValueReplacingEstimator |
IEstimator<TTransformer> for the MissingValueReplacingTransformer. |
MissingValueReplacingTransformer |
ITransformer resulting from fitting a MissingValueReplacingEstimator. |
MutualInformationFeatureSelectingEstimator |
Selects the top k slots across all specified columns ordered by their mutual information with the label column (what you can learn about the label by observing the value of the specified column). |
NormalizingEstimator | |
NormalizingTransformer |
ITransformer resulting from fitting an NormalizingEstimator. |
NormalizingTransformer.AffineNormalizerModelParameters<TData> |
The model parameters generated by affine normalization transformations. |
NormalizingTransformer.BinNormalizerModelParameters<TData> |
The model parameters generated by buckettizing the data into bins with monotonically increasing UpperBounds. The Density value is constant from bin to bin, for most cases. /// |
NormalizingTransformer.CdfNormalizerModelParameters<TData> |
The model parameters generated by cumulative distribution normalization transformations. The cumulative density function is parameterized by Mean and the StandardDeviation as observed during fitting. |
NormalizingTransformer.NormalizerModelParametersBase |
Base class for all the data normalizer models like NormalizingTransformer.AffineNormalizerModelParameters<TData>, NormalizingTransformer.BinNormalizerModelParameters<TData>, NormalizingTransformer.CdfNormalizerModelParameters<TData>. |
OneHotEncodingEstimator |
Converts one or more input columns of categorical values into as many output columns of one-hot encoded vectors. |
OneHotEncodingTransformer |
ITransformer resulting from fitting a OneHotEncodingEstimator. |
OneHotHashEncodingEstimator |
Converts one or more input columns of categorical values into as many output columns of hash-based one-hot encoded vectors. |
OneHotHashEncodingTransformer |
ITransformer resulting from fitting a OneHotHashEncodingEstimator. |
PrincipalComponentAnalysisTransformer |
PCA is a dimensionality-reduction transform which computes the projection of the feature vector onto a low-rank subspace. |
PrincipalComponentAnalyzer |
PCA is a dimensionality-reduction transform which computes the projection of the feature vector onto a low-rank subspace. |
StatefulCustomMappingEstimator<TSrc,TDst,TState> |
Applies a custom mapping function to the specified input columns, while allowing a per-cursor state. The result will be in output columns. |
StatefulCustomMappingFactory<TSrc,TDst,TState> |
The base type for stateful custom mapping factories. |
StatefulCustomMappingTransformer<TSrc,TDst,TState> |
ITransformer resulting from fitting an StatefulCustomMappingEstimator<TSrc,TDst,TState>. |
TensorFlowEstimator |
The TensorFlowTransformer is used in following two scenarios.
|
TensorFlowModel |
This class holds the information related to TensorFlow model and session. It provides some convenient methods to query model schema as well as creation of TensorFlowEstimator object. |
TensorFlowTransformer |
ITransformer for the TensorFlowEstimator. |
TransformInputBase |
The base class for all transform inputs. |
TypeConvertingEstimator |
Estimator for TypeConvertingTransformer. Converts the underlying input column type to a new type. The input and output column types need to be compatible. PrimitiveDataViewType |
TypeConvertingTransformer |
ITransformer resulting from fitting a TypeConvertingEstimator. |
ValueMappingEstimator |
Estimator for ValueMappingTransformer creating a key-value map using the pairs of values in the input data PrimitiveDataViewType |
ValueMappingEstimator<TKey,TValue> |
Estimator for ValueMappingTransformer creating a key-value map using the pairs of values in the input data PrimitiveDataViewType |
ValueMappingTransformer |
ITransformer resulting from fitting a ValueMappingEstimator. |
ValueToKeyMappingEstimator |
IEstimator<TTransformer> for the ValueToKeyMappingTransformer. Converts a set of categorical values (for example, US state abbreviations) into numerical key values (e.g. 1-50). The numerical key can be used directly by classification algorithms. |
ValueToKeyMappingTransformer |
ITransformer resulting from fitting a ValueToKeyMappingEstimator. |
VectorWhiteningEstimator | |
VectorWhiteningTransformer |
Interfaces
IFunctionProvider |
This interface enables extending the ExprTransform language with additional functions. |
Enums
ErrId | |
LpNormNormalizingEstimatorBase.NormFunction |
The kind of unit norm vectors are rescaled to. This enumeration is serialized. |
MissingValueReplacingEstimator.ReplacementMode |
The possible ways to replace missing values. |
OneHotEncodingEstimator.OutputKind | |
ValueToKeyMappingEstimator.KeyOrdinality |
Controls how the order of the output keys. |
WhiteningKind |
Which vector whitening technique to use. ZCA whitening ensures that the average covariance between whitened and original variables is maximal. In contrast, PCA whitening lead to maximally compressed whitened variables, as measured by squared covariance. |
Delegates
SignatureFunctionProvider |