Training
Module
Store and iterate through sequences of data using Arrays and the foreach statement in C# - Training
Learn to create array variables and iterate through elements of the array.
This browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
An iterator can be used to step through collections such as lists and arrays.
An iterator method or get
accessor performs a custom iteration over a collection. An iterator method uses the yield return statement to return each element one at a time. When a yield return
statement is reached, the current location in code is remembered. Execution is restarted from that location the next time the iterator function is called.
You consume an iterator from client code by using a foreach statement or by using a LINQ query.
In the following example, the first iteration of the foreach
loop causes execution to proceed in the SomeNumbers
iterator method until the first yield return
statement is reached. This iteration returns a value of 3, and the current location in the iterator method is retained. On the next iteration of the loop, execution in the iterator method continues from where it left off, again stopping when it reaches a yield return
statement. This iteration returns a value of 5, and the current location in the iterator method is again retained. The loop completes when the end of the iterator method is reached.
static void Main()
{
foreach (int number in SomeNumbers())
{
Console.Write(number.ToString() + " ");
}
// Output: 3 5 8
Console.ReadKey();
}
public static System.Collections.IEnumerable SomeNumbers()
{
yield return 3;
yield return 5;
yield return 8;
}
The return type of an iterator method or get
accessor can be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.
You can use a yield break
statement to end the iteration.
Note
For all examples in this topic except the Simple Iterator example, include using directives for the System.Collections
and System.Collections.Generic
namespaces.
The following example has a single yield return
statement that is inside a for loop. In Main
, each iteration of the foreach
statement body creates a call to the iterator function, which proceeds to the next yield return
statement.
static void Main()
{
foreach (int number in EvenSequence(5, 18))
{
Console.Write(number.ToString() + " ");
}
// Output: 6 8 10 12 14 16 18
Console.ReadKey();
}
public static System.Collections.Generic.IEnumerable<int>
EvenSequence(int firstNumber, int lastNumber)
{
// Yield even numbers in the range.
for (int number = firstNumber; number <= lastNumber; number++)
{
if (number % 2 == 0)
{
yield return number;
}
}
}
In the following example, the DaysOfTheWeek
class implements the IEnumerable interface, which requires a GetEnumerator method. The compiler implicitly calls the GetEnumerator
method, which returns an IEnumerator.
The GetEnumerator
method returns each string one at a time by using the yield return
statement.
static void Main()
{
DaysOfTheWeek days = new DaysOfTheWeek();
foreach (string day in days)
{
Console.Write(day + " ");
}
// Output: Sun Mon Tue Wed Thu Fri Sat
Console.ReadKey();
}
public class DaysOfTheWeek : IEnumerable
{
private string[] days = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"];
public IEnumerator GetEnumerator()
{
for (int index = 0; index < days.Length; index++)
{
// Yield each day of the week.
yield return days[index];
}
}
}
The following example creates a Zoo
class that contains a collection of animals.
The foreach
statement that refers to the class instance (theZoo
) implicitly calls the GetEnumerator
method. The foreach
statements that refer to the Birds
and Mammals
properties use the AnimalsForType
named iterator method.
static void Main()
{
Zoo theZoo = new Zoo();
theZoo.AddMammal("Whale");
theZoo.AddMammal("Rhinoceros");
theZoo.AddBird("Penguin");
theZoo.AddBird("Warbler");
foreach (string name in theZoo)
{
Console.Write(name + " ");
}
Console.WriteLine();
// Output: Whale Rhinoceros Penguin Warbler
foreach (string name in theZoo.Birds)
{
Console.Write(name + " ");
}
Console.WriteLine();
// Output: Penguin Warbler
foreach (string name in theZoo.Mammals)
{
Console.Write(name + " ");
}
Console.WriteLine();
// Output: Whale Rhinoceros
Console.ReadKey();
}
public class Zoo : IEnumerable
{
// Private members.
private List<Animal> animals = new List<Animal>();
// Public methods.
public void AddMammal(string name)
{
animals.Add(new Animal { Name = name, Type = Animal.TypeEnum.Mammal });
}
public void AddBird(string name)
{
animals.Add(new Animal { Name = name, Type = Animal.TypeEnum.Bird });
}
public IEnumerator GetEnumerator()
{
foreach (Animal theAnimal in animals)
{
yield return theAnimal.Name;
}
}
// Public members.
public IEnumerable Mammals
{
get { return AnimalsForType(Animal.TypeEnum.Mammal); }
}
public IEnumerable Birds
{
get { return AnimalsForType(Animal.TypeEnum.Bird); }
}
// Private methods.
private IEnumerable AnimalsForType(Animal.TypeEnum type)
{
foreach (Animal theAnimal in animals)
{
if (theAnimal.Type == type)
{
yield return theAnimal.Name;
}
}
}
// Private class.
private class Animal
{
public enum TypeEnum { Bird, Mammal }
public string Name { get; set; }
public TypeEnum Type { get; set; }
}
}
In the following example, the Stack<T> generic class implements the IEnumerable<T> generic interface. The Push method assigns values to an array of type T
. The GetEnumerator method returns the array values by using the yield return
statement.
In addition to the generic GetEnumerator method, the non-generic GetEnumerator method must also be implemented. This is because IEnumerable<T> inherits from IEnumerable. The non-generic implementation defers to the generic implementation.
The example uses named iterators to support various ways of iterating through the same collection of data. These named iterators are the TopToBottom
and BottomToTop
properties, and the TopN
method.
The BottomToTop
property uses an iterator in a get
accessor.
static void Main()
{
Stack<int> theStack = new Stack<int>();
// Add items to the stack.
for (int number = 0; number <= 9; number++)
{
theStack.Push(number);
}
// Retrieve items from the stack.
// foreach is allowed because theStack implements IEnumerable<int>.
foreach (int number in theStack)
{
Console.Write("{0} ", number);
}
Console.WriteLine();
// Output: 9 8 7 6 5 4 3 2 1 0
// foreach is allowed, because theStack.TopToBottom returns IEnumerable(Of Integer).
foreach (int number in theStack.TopToBottom)
{
Console.Write("{0} ", number);
}
Console.WriteLine();
// Output: 9 8 7 6 5 4 3 2 1 0
foreach (int number in theStack.BottomToTop)
{
Console.Write("{0} ", number);
}
Console.WriteLine();
// Output: 0 1 2 3 4 5 6 7 8 9
foreach (int number in theStack.TopN(7))
{
Console.Write("{0} ", number);
}
Console.WriteLine();
// Output: 9 8 7 6 5 4 3
Console.ReadKey();
}
public class Stack<T> : IEnumerable<T>
{
private T[] values = new T[100];
private int top = 0;
public void Push(T t)
{
values[top] = t;
top++;
}
public T Pop()
{
top--;
return values[top];
}
// This method implements the GetEnumerator method. It allows
// an instance of the class to be used in a foreach statement.
public IEnumerator<T> GetEnumerator()
{
for (int index = top - 1; index >= 0; index--)
{
yield return values[index];
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public IEnumerable<T> TopToBottom
{
get { return this; }
}
public IEnumerable<T> BottomToTop
{
get
{
for (int index = 0; index <= top - 1; index++)
{
yield return values[index];
}
}
}
public IEnumerable<T> TopN(int itemsFromTop)
{
// Return less than itemsFromTop if necessary.
int startIndex = itemsFromTop >= top ? 0 : top - itemsFromTop;
for (int index = top - 1; index >= startIndex; index--)
{
yield return values[index];
}
}
}
An iterator can occur as a method or get
accessor. An iterator cannot occur in an event, instance constructor, static constructor, or static finalizer.
An implicit conversion must exist from the expression type in the yield return
statement to the type argument for the IEnumerable<T>
returned by the iterator.
In C#, an iterator method cannot have any in
, ref
, or out
parameters.
In C#, yield
is not a reserved word and has special meaning only when it is used before a return
or break
keyword.
Although you write an iterator as a method, the compiler translates it into a nested class that is, in effect, a state machine. This class keeps track of the position of the iterator as long the foreach
loop in the client code continues.
To see what the compiler does, you can use the Ildasm.exe tool to view the common intermediate language code that's generated for an iterator method.
When you create an iterator for a class or struct, you don't have to implement the whole IEnumerator interface. When the compiler detects the iterator, it automatically generates the Current
, MoveNext
, and Dispose
methods of the IEnumerator or IEnumerator<T> interface.
On each successive iteration of the foreach
loop (or the direct call to IEnumerator.MoveNext
), the next iterator code body resumes after the previous yield return
statement. It then continues to the next yield return
statement until the end of the iterator body is reached, or until a yield break
statement is encountered.
Iterators don't support the IEnumerator.Reset method. To reiterate from the start, you must obtain a new iterator. Calling Reset on the iterator returned by an iterator method throws a NotSupportedException.
For additional information, see the C# Language Specification.
Iterators enable you to maintain the simplicity of a foreach
loop when you need to use complex code to populate a list sequence. This can be useful when you want to do the following:
Modify the list sequence after the first foreach
loop iteration.
Avoid fully loading a large list before the first iteration of a foreach
loop. An example is a paged fetch to load a batch of table rows. Another example is the EnumerateFiles method, which implements iterators in .NET.
Encapsulate building the list in the iterator. In the iterator method, you can build the list and then yield each result in a loop.
.NET feedback
.NET is an open source project. Select a link to provide feedback:
Training
Module
Store and iterate through sequences of data using Arrays and the foreach statement in C# - Training
Learn to create array variables and iterate through elements of the array.
Documentation
Learn about collections in C#, which are used to work with groups of objects. Collections have different characteristics regarding adding and removing elements, modifying elements, and enumerating the collection elements.
Lambda expressions - Lambda expressions and anonymous functions - C# reference
C# lambda expressions that are used to create anonymous functions and expression bodied members.
Learn how to use built-in C# iterators and how to create your own custom iterator methods.