System.Random class
This article provides supplementary remarks to the reference documentation for this API.
The Random class represents a pseudo-random number generator, which is an algorithm that produces a sequence of numbers that meet certain statistical requirements for randomness.
Pseudo-random numbers are chosen with equal probability from a finite set of numbers. The chosen numbers are not completely random because a mathematical algorithm is used to select them, but they are sufficiently random for practical purposes. The implementation of the Random class is based on a modified version of Donald E. Knuth's subtractive random number generator algorithm. For more information, see D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition, 1997.
To generate a cryptographically secure random number, such as one that's suitable for creating a random password, use one of the static methods in the System.Security.Cryptography.RandomNumberGenerator class.
Instantiate the random number generator
You instantiate the random number generator by providing a seed value (a starting value for the pseudo-random number generation algorithm) to a Random class constructor. You can supply the seed value either explicitly or implicitly:
- The Random(Int32) constructor uses an explicit seed value that you supply.
- The Random() constructor uses the default seed value. This is the most common way of instantiating the random number generator.
In .NET Framework, the default seed value is time-dependent. In .NET Core, the default seed value is produced by the thread-static, pseudo-random number generator.
If the same seed is used for separate Random objects, they will generate the same series of random numbers. This can be useful for creating a test suite that processes random values, or for replaying games that derive their data from random numbers. However, note that Random objects in processes running under different versions of .NET Framework might return differentseries of random numbers even if they're instantiated with identical seed values.
To produce different sequences of random numbers, you can make the seed value time-dependent, thereby producing a different series with each new instance of Random. The parameterized Random(Int32) constructor can take an Int32 value based on the number of ticks in the current time, whereas the parameterless Random() constructor uses the system clock to generate its seed value. However, on .NET Framework only, because the clock has finite resolution, using the parameterless constructor to create different Random objects in close succession creates random number generators that produce identical sequences of random numbers. The following example illustrates how two Random objects that are instantiated in close succession in a .NET Framework application generate an identical series of random numbers. On most Windows systems, Random objects created within 15 milliseconds of one another are likely to have identical seed values.
byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();
rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);
Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
ctr <= bytes1.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes1[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
ctr <= bytes2.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes2[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()
rnd1.NextBytes bytes1
rnd2.NextBytes bytes2
printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
printf "%5i" bytes1.[i]
if (i + 1) % 10 = 0 then printfn ""
printfn ""
printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
printf "%5i" bytes2.[i]
if (i + 1) % 10 = 0 then printfn ""
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
Module modMain
Public Sub Main()
Dim bytes1(99), bytes2(99) As Byte
Dim rnd1 As New Random()
Dim rnd2 As New Random()
rnd1.NextBytes(bytes1)
rnd2.NextBytes(bytes2)
Console.WriteLine("First Series:")
For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
Console.Write("{0, 5}", bytes1(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
Console.WriteLine()
Console.WriteLine("Second Series:")
For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
Console.Write("{0, 5}", bytes2(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' First Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
'
' Second Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
To avoid this problem, create a single Random object instead of multiple objects. Note that the Random
class in .NET Core does not have this limitation.
Avoid multiple instantiations
On .NET Framework, initializing two random number generators in a tight loop or in rapid succession creates two random number generators that can produce identical sequences of random numbers. In most cases, this is not the developer's intent and can lead to performance issues, because instantiating and initializing a random number generator is a relatively expensive process.
Both to improve performance and to avoid inadvertently creating separate random number generators that generate identical numeric sequences, we recommend that you create one Random object to generate many random numbers over time, instead of creating new Random objects to generate one random number.
However, the Random class isn't thread safe. If you call Random methods from multiple threads, follow the guidelines discussed in the next section.
Thread safety
Instead of instantiating individual Random objects, we recommend that you create a single Random instance to generate all the random numbers needed by your app. However, Random objects are not thread safe. If your app calls Random methods from multiple threads, you must use a synchronization object to ensure that only one thread can access the random number generator at a time. If you don't ensure that the Random object is accessed in a thread-safe way, calls to methods that return random numbers return 0.
The following example uses the C# lock Statement, the F# lock function and the Visual Basic SyncLock statement to ensure that a single random number generator is accessed by 11 threads in a thread-safe manner. Each thread generates 2 million random numbers, counts the number of random numbers generated and calculates their sum, and then updates the totals for all threads when it finishes executing.
using System;
using System.Threading;
public class Example13
{
[ThreadStatic] static double previous = 0.0;
[ThreadStatic] static int perThreadCtr = 0;
[ThreadStatic] static double perThreadTotal = 0.0;
static CancellationTokenSource source;
static CountdownEvent countdown;
static Object randLock, numericLock;
static Random rand;
double totalValue = 0.0;
int totalCount = 0;
public Example13()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
countdown = new CountdownEvent(1);
source = new CancellationTokenSource();
}
public static void Main()
{
Example13 ex = new Example13();
Thread.CurrentThread.Name = "Main";
ex.Execute();
}
private void Execute()
{
CancellationToken token = source.Token;
for (int threads = 1; threads <= 10; threads++)
{
Thread newThread = new Thread(this.GetRandomNumbers);
newThread.Name = threads.ToString();
newThread.Start(token);
}
this.GetRandomNumbers(token);
countdown.Signal();
// Make sure all threads have finished.
countdown.Wait();
source.Dispose();
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
private void GetRandomNumbers(Object o)
{
CancellationToken token = (CancellationToken)o;
double result = 0.0;
countdown.AddCount(1);
try
{
for (int ctr = 0; ctr < 2000000; ctr++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
perThreadCtr++;
perThreadTotal += result;
}
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name);
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal / perThreadCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += perThreadCtr;
totalValue += perThreadTotal;
}
}
catch (OperationCanceledException e)
{
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
}
finally
{
countdown.Signal();
}
}
}
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
open System
open System.Threading
type Example() =
[<ThreadStatic; DefaultValue>]
static val mutable private previous : float
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadCtr : int
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadTotal : float
static let source = new CancellationTokenSource()
static let countdown = new CountdownEvent(1)
static let randLock = obj ()
static let numericLock = obj ()
static let rand = Random()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.GetRandomNumbers(token: CancellationToken) =
let mutable result = 0.0
countdown.AddCount 1
try
try
for _ = 0 to 1999999 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () ->
result <- rand.NextDouble() )
// Check for corruption of Random instance.
if result = Example.previous && result = 0.0 then
source.Cancel()
else
Example.previous <- result
Example.perThreadCtr <- Example.perThreadCtr + 1
Example.perThreadTotal <- Example.perThreadTotal + result
// Update overall totals.
lock numericLock (fun () ->
// Show result.
printfn "Thread %s finished execution." Thread.CurrentThread.Name
printfn $"Random numbers generated: {Example.perThreadCtr:N0}"
printfn $"Sum of random numbers: {Example.perThreadTotal:N2}"
printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + Example.perThreadCtr
totalValue <- totalValue + Example.perThreadTotal)
with :? OperationCanceledException as e ->
printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
finally
countdown.Signal() |> ignore
member this.Execute() =
let token = source.Token
for i = 1 to 10 do
let newThread = Thread(fun () -> this.GetRandomNumbers token)
newThread.Name <- string i
newThread.Start()
this.GetRandomNumbers token
countdown.Signal() |> ignore
countdown.Wait()
source.Dispose()
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
Imports System.Threading
Module Example15
<ThreadStatic> Dim previous As Double = 0.0
<ThreadStatic> Dim perThreadCtr As Integer = 0
<ThreadStatic> Dim perThreadTotal As Double = 0.0
Dim source As New CancellationTokenSource()
Dim countdown As New CountdownEvent(1)
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Thread.CurrentThread.Name = "Main"
Dim token As CancellationToken = source.Token
For threads As Integer = 1 To 10
Dim newThread As New Thread(AddressOf GetRandomNumbers)
newThread.Name = threads.ToString()
newThread.Start(token)
Next
GetRandomNumbers(token)
countdown.Signal()
' Make sure all threads have finished.
countdown.Wait()
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
End Sub
Private Sub GetRandomNumbers(o As Object)
Dim token As CancellationToken = CType(o, CancellationToken)
Dim result As Double = 0.0
countdown.AddCount(1)
Try
For ctr As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
perThreadCtr += 1
perThreadTotal += result
Next
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name)
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
Console.WriteLine("Random number mean: {0:N4}", perThreadTotal / perThreadCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += perThreadCtr
totalValue += perThreadTotal
End SyncLock
Catch e As OperationCanceledException
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
Finally
countdown.Signal()
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Thread 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,491.05
' Random number mean: 0.5002
'
' Thread 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,329.64
' Random number mean: 0.4997
'
' Thread 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,166.89
' Random number mean: 0.5001
'
' Thread 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,628.37
' Random number mean: 0.4998
'
' Thread Main finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,920.89
' Random number mean: 0.5000
'
' Thread 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,370.45
' Random number mean: 0.4997
'
' Thread 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,330.92
' Random number mean: 0.4997
'
' Thread 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,172.79
' Random number mean: 0.5001
'
' Thread 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,079.43
' Random number mean: 0.5000
'
' Thread 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,817.91
' Random number mean: 0.4999
'
' Thread 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,930.63
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 10,998,238.98
' Random number mean: 0.4999
The example ensures thread-safety in the following ways:
- The ThreadStaticAttribute attribute is used to define thread-local variables that track the total number of random numbers generated and their sum for each thread.
- A lock (the
lock
statement in C#, thelock
function in F# and theSyncLock
statement in Visual Basic) protects access to the variables for the total count and sum of all random numbers generated on all threads. - A semaphore (the CountdownEvent object) is used to ensure that the main thread blocks until all other threads complete execution.
- The example checks whether the random number generator has become corrupted by determining whether two consecutive calls to random number generation methods return 0. If corruption is detected, the example uses the CancellationTokenSource object to signal that all threads should be canceled.
- Before generating each random number, each thread checks the state of the CancellationToken object. If cancellation is requested, the example calls the CancellationToken.ThrowIfCancellationRequested method to cancel the thread.
The following example is identical to the first, except that it uses a Task object and a lambda expression instead of Thread objects.
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
public class Example15
{
static Object randLock, numericLock;
static Random rand;
static CancellationTokenSource source;
double totalValue = 0.0;
int totalCount = 0;
public Example15()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
source = new CancellationTokenSource();
}
public static async Task Main()
{
Example15 ex = new Example15();
Thread.CurrentThread.Name = "Main";
await ex.Execute();
}
private async Task Execute()
{
List<Task> tasks = new List<Task>();
for (int ctr = 0; ctr <= 10; ctr++)
{
CancellationToken token = source.Token;
int taskNo = ctr;
tasks.Add(Task.Run(() =>
{
double previous = 0.0;
int taskCtr = 0;
double taskTotal = 0.0;
double result = 0.0;
for (int n = 0; n < 2000000; n++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
taskCtr++;
taskTotal += result;
}
// Show result.
Console.WriteLine("Task {0} finished execution.", taskNo);
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
Console.WriteLine("Random number mean: {0:N4}\n", taskTotal / taskCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += taskCtr;
totalValue += taskTotal;
}
},
token));
}
try
{
await Task.WhenAll(tasks.ToArray());
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
catch (AggregateException e)
{
foreach (Exception inner in e.InnerExceptions)
{
TaskCanceledException canc = inner as TaskCanceledException;
if (canc != null)
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
else
Console.WriteLine("Exception: {0}", inner.GetType().Name);
}
}
finally
{
source.Dispose();
}
}
}
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks
type Example() =
static let source = new CancellationTokenSource()
static let rand = Random()
static let randLock = obj ()
static let numericLock = obj ()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.Execute() =
use source = source // Dispose of the CancellationTokenSource when we're done with it.
let token = source.Token
let tasks =
[| for i = 0 to 10 do
Task.Run(
(fun () ->
let mutable previous = 0.0
let mutable taskCtr = 0
let mutable taskTotal = 0.0
let mutable result = 0.0
for _ = 1 to 2000000 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () -> result <- rand.NextDouble())
// Check for corruption of Random instance.
if result = previous && result = 0.0 then
source.Cancel()
else
previous <- result
taskCtr <- taskCtr + 1
taskTotal <- taskTotal + result
lock numericLock (fun () ->
// Show result.
printfn "Task %i finished execution." i
printfn $"Random numbers generated: {taskCtr:N0}"
printfn $"Sum of random numbers: {taskTotal:N2}"
printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + taskCtr
totalValue <- totalValue + taskTotal)),
token
) |]
try
// Run tasks with F# Async.
Task.WhenAll tasks
|> Async.AwaitTask
|> Async.RunSynchronously
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
with
| :? AggregateException as e ->
for inner in e.InnerExceptions do
match inner with
| :? TaskCanceledException as canc ->
if canc <> null then
printfn $"Task #{canc.Task.Id} cancelled"
else
printfn $"Exception: {inner.GetType().Name}"
| _ -> ()
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks
Module Example16
Dim source As New CancellationTokenSource()
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Dim tasks As New List(Of Task)()
For ctr As Integer = 1 To 10
Dim token As CancellationToken = source.Token
Dim taskNo As Integer = ctr
tasks.Add(Task.Run(
Sub()
Dim previous As Double = 0.0
Dim taskCtr As Integer = 0
Dim taskTotal As Double = 0.0
Dim result As Double = 0.0
For n As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
taskCtr += 1
taskTotal += result
Next
' Show result.
Console.WriteLine("Task {0} finished execution.", taskNo)
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
Console.WriteLine("Random number mean: {0:N4}", taskTotal / taskCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += taskCtr
totalValue += taskTotal
End SyncLock
End Sub, token))
Next
Try
Task.WaitAll(tasks.ToArray())
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
Catch e As AggregateException
For Each inner As Exception In e.InnerExceptions
Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
If canc IsNot Nothing Then
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
Else
Console.WriteLine("Exception: {0}", inner.GetType().Name)
End If
Next
Finally
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Task 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,502.47
' Random number mean: 0.5003
'
' Task 0 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,445.63
' Random number mean: 0.5002
'
' Task 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,556.04
' Random number mean: 0.5003
'
' Task 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,178.87
' Random number mean: 0.5001
'
' Task 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,819.17
' Random number mean: 0.4999
'
' Task 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,190.58
' Random number mean: 0.5001
'
' Task 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,720.21
' Random number mean: 0.4999
'
' Task 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,000.96
' Random number mean: 0.4995
'
' Task 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,499.33
' Random number mean: 0.4997
'
' Task 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,193.25
' Random number mean: 0.5001
'
' Task 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,960.82
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 11,000,067.33
' Random number mean: 0.5000
It differs from the first example in the following ways:
- The variables to keep track of the number of random numbers generated and their sum in each task are local to the task, so there is no need to use the ThreadStaticAttribute attribute.
- The static Task.WaitAll method is used to ensure that the main thread doesn't complete before all tasks have finished. There is no need for the CountdownEvent object.
- The exception that results from task cancellation is surfaced in the Task.WaitAll method. In the previous example, it is handled by each thread.
Generate different types of random numbers
The random number generator provides methods that let you generate the following kinds of random numbers:
A series of Byte values. You determine the number of byte values by passing an array initialized to the number of elements you want the method to return to the NextBytes method. The following example generates 20 bytes.
Random rnd = new Random(); Byte[] bytes = new Byte[20]; rnd.NextBytes(bytes); for (int ctr = 1; ctr <= bytes.Length; ctr++) { Console.Write("{0,3} ", bytes[ctr - 1]); if (ctr % 10 == 0) Console.WriteLine(); } // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
let rnd = Random() let bytes = Array.zeroCreate 20 rnd.NextBytes bytes for i = 1 to bytes.Length do printf "%3i " bytes.[i - 1] if (i % 10 = 0) then printfn "" // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
Module Example9 Public Sub Main() Dim rnd As New Random() Dim bytes(19) As Byte rnd.NextBytes(bytes) For ctr As Integer = 1 To bytes.Length Console.Write("{0,3} ", bytes(ctr - 1)) If ctr Mod 10 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 141 48 189 66 134 212 211 71 161 56 ' 181 166 220 133 9 252 222 57 62 62
A single integer. You can choose whether you want an integer from 0 to a maximum value (Int32.MaxValue - 1) by calling the Next() method, an integer between 0 and a specific value by calling the Next(Int32) method, or an integer within a range of values by calling the Next(Int32, Int32) method. In the parameterized overloads, the specified maximum value is exclusive; that is, the actual maximum number generated is one less than the specified value.
The following example calls the Next(Int32, Int32) method to generate 10 random numbers between -10 and 10. Note that the second argument to the method specifies the exclusive upper bound of the range of random values returned by the method. In other words, the largest integer that the method can return is one less than this value.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,3} ", rnd.Next(-10, 11)); } // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
let rnd = Random() for i = 0 to 9 do printf "%3i " (rnd.Next(-10, 11)) // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
Module Example11 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,3} ", rnd.Next(-10, 11)) Next End Sub End Module ' The example displays output like the following: ' 2 9 -3 2 4 -7 -3 -8 -8 5
A single floating-point value from 0.0 to less than 1.0 by calling the NextDouble method. The exclusive upper bound of the random number returned by the method is 1, so its actual upper bound is 0.99999999999999978. The following example generates 10 random floating-point numbers.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,-19:R} ", rnd.NextDouble()); if ((ctr + 1) % 3 == 0) Console.WriteLine(); } // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
let rnd = Random() for i = 0 to 9 do printf $"{rnd.NextDouble(),-19:R} " if (i + 1) % 3 = 0 then printfn "" // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
Module Example10 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,-19:R} ", rnd.NextDouble()) If (ctr + 1) Mod 3 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 0.7911680553998649 0.0903414949264105 0.79776258291572455 ' 0.615568345233597 0.652644504165577 0.84023809378977776 ' 0.099662564741290441 0.91341467383942321 0.96018602045261581 ' 0.74772306473354022
Important
The Next(Int32, Int32) method allows you to specify the range of the returned random number. However, the maxValue
parameter, which specifies the upper range returned number, is an exclusive, not an inclusive, value. This means that the method call Next(0, 100)
returns a value between 0 and 99, and not between 0 and 100.
You can also use the Random class for such tasks as generating random Boolean values, generating random floating-point values in a specified range, generating Generate random 64-bit integers, and retrieving a unique element from an array or collection.
Substitute your own algorithm
You can implement your own random number generator by inheriting from the Random class and supplying your random number generation algorithm. To supply your own algorithm, you must override the Sample method, which implements the random number generation algorithm. You should also override the Next(), Next(Int32, Int32), and NextBytes methods to ensure that they call your overridden Sample method. You don't have to override the Next(Int32) and NextDouble methods.
For an example that derives from the Random class and modifies its default pseudo-random number generator, see the Sample reference page.
Retrieve the same sequence of random values
Sometimes you want to generate the same sequence of random numbers in software test scenarios and in game playing. Testing with the same sequence of random numbers allows you to detect regressions and confirm bug fixes. Using the same sequence of random number in games allows you to replay previous games.
You can generate the same sequence of random numbers by providing the same seed value to the Random(Int32) constructor. The seed value provides a starting value for the pseudo-random number generation algorithm. The following example uses 100100 as an arbitrary seed value to instantiate the Random object, displays 20 random floating-point values, and persists the seed value. It then restores the seed value, instantiates a new random number generator, and displays the same 20 random floating-point values. Note that the example may produce different sequences of random numbers if run on different versions of .NET.
using System;
using System.IO;
public class Example12
{
public static void Main()
{
int seed = 100100;
ShowRandomNumbers(seed);
Console.WriteLine();
PersistSeed(seed);
DisplayNewRandomNumbers();
}
private static void ShowRandomNumbers(int seed)
{
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
private static void PersistSeed(int seed)
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
BinaryWriter bin = new BinaryWriter(fs);
bin.Write(seed);
bin.Close();
}
private static void DisplayNewRandomNumbers()
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
BinaryReader bin = new BinaryReader(fs);
int seed = bin.ReadInt32();
bin.Close();
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
}
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
open System
open System.IO
let showRandomNumbers seed =
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let persistSeed (seed: int) =
use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
bin.Write seed
let displayNewRandomNumbers () =
use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
let seed = bin.ReadInt32()
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let seed = 100100
showRandomNumbers seed
printfn ""
persistSeed seed
displayNewRandomNumbers ()
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
Imports System.IO
Module Example14
Public Sub Main()
Dim seed As Integer = 100100
ShowRandomNumbers(seed)
Console.WriteLine()
PersistSeed(seed)
DisplayNewRandomNumbers()
End Sub
Private Sub ShowRandomNumbers(seed As Integer)
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
Private Sub PersistSeed(seed As Integer)
Dim fs As New FileStream(".\seed.dat", FileMode.Create)
Dim bin As New BinaryWriter(fs)
bin.Write(seed)
bin.Close()
End Sub
Private Sub DisplayNewRandomNumbers()
Dim fs As New FileStream(".\seed.dat", FileMode.Open)
Dim bin As New BinaryReader(fs)
Dim seed As Integer = bin.ReadInt32()
bin.Close()
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
End Module
' The example displays output like the following:
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
'
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
Retrieve unique sequences of random numbers
Providing different seed values to instances of the Random class causes each random number generator to produce a different sequence of values. You can provide a seed value either explicitly by calling the Random(Int32) constructor, or implicitly by calling the Random() constructor. Most developers call the parameterless constructor, which uses the system clock. The following example uses this approach to instantiate two Random instances. Each instance displays a series of 10 random integers.
using System;
using System.Threading;
public class Example16
{
public static void Main()
{
Console.WriteLine("Instantiating two random number generators...");
Random rnd1 = new Random();
Thread.Sleep(2000);
Random rnd2 = new Random();
Console.WriteLine("\nThe first random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd1.Next());
Console.WriteLine("\nThe second random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd2.Next());
}
}
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
open System
open System.Threading
printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()
printfn "\nThe first random number generator:"
for _ = 1 to 10 do
printfn $" {rnd1.Next()}"
printfn "\nThe second random number generator:"
for _ = 1 to 10 do
printfn $" {rnd2.Next()}"
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
Imports System.Threading
Module Example17
Public Sub Main()
Console.WriteLine("Instantiating two random number generators...")
Dim rnd1 As New Random()
Thread.Sleep(2000)
Dim rnd2 As New Random()
Console.WriteLine()
Console.WriteLine("The first random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd1.Next())
Next
Console.WriteLine()
Console.WriteLine("The second random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd2.Next())
Next
End Sub
End Module
' The example displays output like the following:
' Instantiating two random number generators...
'
' The first random number generator:
' 643164361
' 1606571630
' 1725607587
' 2138048432
' 496874898
' 1969147632
' 2034533749
' 1840964542
' 412380298
' 47518930
'
' The second random number generator:
' 1251659083
' 1514185439
' 1465798544
' 517841554
' 1821920222
' 195154223
' 1538948391
' 1548375095
' 546062716
' 897797880
However, because of its finite resolution, the system clock doesn't detect time differences that are less than approximately 15 milliseconds. Therefore, if your code calls the Random() overload on .NET Framework to instantiate two Random objects in succession, you might inadvertently be providing the objects with identical seed values. (The Random class in .NET Core does not have this limitation.) To see this in the previous example, comment out the Thread.Sleep method call, and compile and run the example again.
To prevent this from happening, we recommend that you instantiate a single Random object rather than multiple ones. However, since Random isn't thread safe, you must use some synchronization device if you access a Random instance from multiple threads; for more information, see the Thread safety section. Alternately, you can use a delay mechanism, such as the Sleep method used in the previous example, to ensure that the instantiations occur more than 15 millisecond apart.
Retrieve integers in a specified range
You can retrieve integers in a specified range by calling the Next(Int32, Int32) method, which lets you specify both the lower and the upper bound of the numbers you'd like the random number generator to return. The upper bound is an exclusive, not an inclusive, value. That is, it isn't included in the range of values returned by the method. The following example uses this method to generate random integers between -10 and 10. Note that it specifies 11, which is one greater than the desired value, as the value of the maxValue
argument in the method call.
Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++)
{
Console.Write("{0,3} ", rnd.Next(-10, 11));
if (ctr % 5 == 0) Console.WriteLine();
}
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
let rnd = Random()
for i = 1 to 15 do
printf "%3i " (rnd.Next(-10, 11))
if i % 5 = 0 then printfn ""
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
Module Example12
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 15
Console.Write("{0,3} ", rnd.Next(-10, 11))
If ctr Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' -2 -5 -1 -2 10
' -3 6 -4 -8 3
' -7 10 5 -2 4
Retrieve integers with a specified number of digits
You can call the Next(Int32, Int32) method to retrieve numbers with a specified number of digits. For example, to retrieve numbers with four digits (that is, numbers that range from 1000 to 9999), you call the Next(Int32, Int32) method with a minValue
value of 1000 and a maxValue
value of 10000, as the following example shows.
Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++)
{
Console.Write("{0,3} ", rnd.Next(1000, 10000));
if (ctr % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
let rnd = Random()
for i = 1 to 50 do
printf "%3i " (rnd.Next(1000, 10000))
if i % 10 = 0 then printfn ""
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Module Example13
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 50
Console.Write("{0,3} ", rnd.Next(1000, 10000))
If ctr Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
' 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
' 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
' 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
' 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Retrieve floating-point values in a specified range
The NextDouble method returns random floating-point values that range from 0 to less than 1. However, you'll often want to generate random values in some other range.
If the interval between the minimum and maximum desired values is 1, you can add the difference between the desired starting interval and 0 to the number returned by the NextDouble method. The following example does this to generate 10 random numbers between -1 and 0.
Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(rnd.NextDouble() - 1);
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
let rnd = Random()
for _ = 1 to 10 do
printfn "%O" (rnd.NextDouble() - 1.0)
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
Module Example6
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 10
Console.WriteLine(rnd.NextDouble() - 1)
Next
End Sub
End Module
' The example displays output like the following:
' -0.930412760437658
' -0.164699016215605
' -0.9851692803135
' -0.43468508843085
' -0.177202483255976
' -0.776813320245972
' -0.0713201854710096
' -0.0912875561468711
' -0.540621722368813
' -0.232211863730201
To generate random floating-point numbers whose lower bound is 0 but upper bound is greater than 1 (or, in the case of negative numbers, whose lower bound is less than -1 and upper bound is 0), multiply the random number by the non-zero bound. The following example does this to generate 20 million random floating-point numbers that range from 0 to Int64.MaxValue. In also displays the distribution of the random values generated by the method.
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
double number;
int[] count = new int[10];
// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = rnd.NextDouble() * Int64.MaxValue;
// Categorize random numbers into 10 groups.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
// Generate 20 million random integers.
let count =
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
|> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example5
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million integer values.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
To generate random floating-point numbers between two arbitrary values, like the Next(Int32, Int32) method does for integers, use the following formula:
Random.NextDouble() * (maxValue - minValue) + minValue
The following example generates 1 million random numbers that range from 10.0 to 11.0, and displays their distribution.
Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++)
{
Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
range[(int)Math.Truncate((value - lowerBound) * 10)]++;
}
for (int ctr = 0; ctr <= 9; ctr++)
{
Double lowerRange = 10 + ctr * .1;
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range[ctr],
range[ctr] / 1000000.0);
}
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
let rnd = Random()
let lowerBound = 10.0
let upperBound = 11.0
let range =
Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) + lowerBound)
|> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
|> Array.map snd
for i = 0 to 9 do
let lowerRange = 10.0 + float i * 0.1
printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0} ({float range.[i] / 1000000.0,6:P2})"
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
Module Example7
Public Sub Main()
Dim rnd As New Random()
Dim lowerBound As Integer = 10
Dim upperBound As Integer = 11
Dim range(9) As Integer
For ctr As Integer = 1 To 1000000
Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
Next
For ctr As Integer = 0 To 9
Dim lowerRange As Double = 10 + ctr * 0.1
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + 0.1, range(ctr),
range(ctr) / 1000000.0)
Next
End Sub
End Module
' The example displays output like the following:
' 10.0 to 10.1: 99,929 ( 9.99 %)
' 10.1 to 10.2: 100,189 (10.02 %)
' 10.2 to 10.3: 99,384 ( 9.94 %)
' 10.3 to 10.4: 100,240 (10.02 %)
' 10.4 to 10.5: 99,397 ( 9.94 %)
' 10.5 to 10.6: 100,580 (10.06 %)
' 10.6 to 10.7: 100,293 (10.03 %)
' 10.7 to 10.8: 100,135 (10.01 %)
' 10.8 to 10.9: 99,905 ( 9.99 %)
' 10.9 to 11.0: 99,948 ( 9.99 %)
Generate random Boolean values
The Random class doesn't provide methods that generate Boolean values. However, you can define your own class or method to do that. The following example defines a class, BooleanGenerator
, with a single method, NextBoolean
. The BooleanGenerator
class stores a Random object as a private variable. The NextBoolean
method calls the Random.Next(Int32, Int32) method and passes the result to the Convert.ToBoolean(Int32) method. Note that 2 is used as the argument to specify the upper bound of the random number. Since this is an exclusive value, the method call returns either 0 or 1.
using System;
public class Example1
{
public static void Main()
{
// Instantiate the Boolean generator.
BooleanGenerator boolGen = new BooleanGenerator();
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = boolGen.NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
}
}
public class BooleanGenerator
{
Random rnd;
public BooleanGenerator()
{
rnd = new Random();
}
public bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
}
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
open System
type BooleanGenerator() =
let rnd = Random()
member _.NextBoolean() =
rnd.Next(0, 2) = 1
let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = boolGen.NextBoolean()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
Module Example2
Public Sub Main()
' Instantiate the Boolean generator.
Dim boolGen As New BooleanGenerator()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = boolGen.NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
End Module
Public Class BooleanGenerator
Dim rnd As Random
Public Sub New()
rnd = New Random()
End Sub
Public Function NextBoolean() As Boolean
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Class
' The example displays the following output:
' Number of true values: 500,004 (50.000 %)
' Number of false values: 499,996 (50.000 %)
Instead of creating a separate class to generate random Boolean values, the example could simply have defined a single method. In that case, however, the Random object should have been defined as a class-level variable to avoid instantiating a new Random instance in each method call. In Visual Basic, the Random instance can be defined as a Static variable in the NextBoolean
method. The following example provides an implementation.
Random rnd = new Random();
int totalTrue = 0, totalFalse = 0;
// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
let rnd = Random()
let nextBool () =
rnd.Next(0, 2) = 1
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = nextBool ()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
Module Example3
Public Sub Main()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
Public Function NextBoolean() As Boolean
Static rnd As New Random()
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Module
' The example displays the following output:
' Number of true values: 499,777 (49.978 %)
' Number of false values: 500,223 (50.022 %)
Generate random 64-bit integers
The overloads of the Next method return 32-bit integers. However, in some cases, you might want to work with 64-bit integers. You can do this as follows:
Call the NextDouble method to retrieve a double-precision floating point value.
Multiply that value by Int64.MaxValue.
The following example uses this technique to generate 20 million random long integers and categorizes them in 10 equal groups. It then evaluates the distribution of the random numbers by counting the number in each group from 0 to Int64.MaxValue. As the output from the example shows, the numbers are distributed more or less equally through the range of a long integer.
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
long number;
int[] count = new int[10];
// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = (long)(rnd.NextDouble() * Int64.MaxValue);
// Categorize random numbers.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
let count =
// Generate 20 million random long integers.
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
|> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example8
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million long integers.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
An alternative technique that uses bit manipulation does not generate truly random numbers. This technique calls Next() to generate two integers, left-shifts one by 32 bits, and ORs them together. This technique has two limitations:
Because bit 31 is the sign bit, the value in bit 31 of the resulting long integer is always 0. This can be addressed by generating a random 0 or 1, left-shifting it 31 bits, and ORing it with the original random long integer.
More seriously, because the probability that the value returned by Next() will be 0, there will be few if any random numbers in the range 0x0-0x00000000FFFFFFFF.
Retrieve bytes in a specified range
The overloads of the Next method allow you to specify the range of random numbers, but the NextBytes method does not. The following example implements a NextBytes
method that lets you specify the range of the returned bytes. It defines a Random2
class that derives from Random and overloads its NextBytes
method.
using System;
public class Example3
{
public static void Main()
{
Random2 rnd = new Random2();
Byte[] bytes = new Byte[10000];
int[] total = new int[101];
rnd.NextBytes(bytes, 0, 101);
// Calculate how many of each value we have.
foreach (var value in bytes)
total[value]++;
// Display the results.
for (int ctr = 0; ctr < total.Length; ctr++)
{
Console.Write("{0,3}: {1,-3} ", ctr, total[ctr]);
if ((ctr + 1) % 5 == 0) Console.WriteLine();
}
}
}
public class Random2 : Random
{
public Random2() : base()
{ }
public Random2(int seed) : base(seed)
{ }
public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
{
for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
bytes[ctr] = (byte)Next(minValue, maxValue);
}
}
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
open System
type Random2() =
inherit Random()
member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
bytes.[i] <- this.Next(int minValue, int maxValue) |> byte
let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)
// Calculate how many of each value we have.
for v in bytes do
total.[int v] <- total.[int v] + 1
// Display the results.
for i = 0 to total.Length - 1 do
printf "%3i: %-3i " i total.[i]
if (i + 1) % 5 = 0 then printfn ""
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
Module Example4
Public Sub Main()
Dim rnd As New Random2()
Dim bytes(9999) As Byte
Dim total(100) As Integer
rnd.NextBytes(bytes, 0, 101)
' Calculate how many of each value we have.
For Each value In bytes
total(value) += 1
Next
' Display the results.
For ctr As Integer = 0 To total.Length - 1
Console.Write("{0,3}: {1,-3} ", ctr, total(ctr))
If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
Public Class Random2 : Inherits Random
Public Sub New()
MyBase.New()
End Sub
Public Sub New(seed As Integer)
MyBase.New(seed)
End Sub
Public Overloads Sub NextBytes(bytes() As Byte,
minValue As Byte, maxValue As Byte)
For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
Next
End Sub
End Class
' The example displays output like the following:
' 0: 115 1: 119 2: 92 3: 98 4: 92
' 5: 102 6: 103 7: 84 8: 93 9: 116
' 10: 91 11: 98 12: 106 13: 91 14: 92
' 15: 101 16: 100 17: 96 18: 97 19: 100
' 20: 101 21: 106 22: 112 23: 82 24: 85
' 25: 102 26: 107 27: 98 28: 106 29: 102
' 30: 109 31: 108 32: 94 33: 101 34: 107
' 35: 101 36: 86 37: 100 38: 101 39: 102
' 40: 113 41: 95 42: 96 43: 89 44: 99
' 45: 81 46: 89 47: 105 48: 100 49: 85
' 50: 103 51: 103 52: 93 53: 89 54: 91
' 55: 97 56: 105 57: 97 58: 110 59: 86
' 60: 116 61: 94 62: 117 63: 98 64: 110
' 65: 93 66: 102 67: 100 68: 105 69: 83
' 70: 81 71: 97 72: 85 73: 70 74: 98
' 75: 100 76: 110 77: 114 78: 83 79: 90
' 80: 96 81: 112 82: 102 83: 102 84: 99
' 85: 81 86: 100 87: 93 88: 99 89: 118
' 90: 95 91: 124 92: 108 93: 96 94: 104
' 95: 106 96: 99 97: 99 98: 92 99: 99
' 100: 108
The NextBytes(Byte[], Byte, Byte)
method wraps a call to the Next(Int32, Int32) method and specifies the minimum value and one greater than the maximum value (in this case, 0 and 101) that we want returned in the byte array. Because we are sure that the integer values returned by the Next method are within the range of the Byte data type, we can safely cast them (in C# and F#) or convert them (in Visual Basic) from integers to bytes.
Retrieve an element from an array or collection at random
Random numbers often serve as indexes to retrieve values from arrays or collections. To retrieve a random index value, you can call the Next(Int32, Int32) method, and use the lower bound of the array as the value of its minValue
argument and one greater than the upper bound of the array as the value of its maxValue
argument. For a zero-based array, this is equivalent to its Length property, or one greater than the value returned by the Array.GetUpperBound method. The following example randomly retrieves the name of a city in the United States from an array of cities.
String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine("Today's city of the day: {0}",
cities[index]);
// The example displays output like the following:
// Today's city of the day: Honolulu
let cities =
[| "Atlanta"; "Boston"; "Chicago"; "Detroit";
"Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
"Jersey City"; "Kansas City"; "Los Angeles";
"Milwaukee"; "New York"; "Omaha"; "Philadelphia";
"Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]
let rnd = Random()
let index = rnd.Next(0,cities.Length)
printfn "Today's city of the day: %s" cities.[index]
// The example displays output like the following:
// Today's city of the day: Honolulu
Module Example1
Public Sub Main()
Dim cities() As String = {"Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington"}
Dim rnd As New Random()
Dim index As Integer = rnd.Next(0, cities.Length)
Console.WriteLine("Today's city of the day: {0}",
cities(index))
End Sub
End Module
' The example displays output like the following:
' Today's city of the day: Honolulu
Retrieve a unique element from an array or collection
A random number generator can always return duplicate values. As the range of numbers becomes smaller or the number of values generated becomes larger, the probability of duplicates grows. If random values must be unique, more numbers are generated to compensate for duplicates, resulting in increasingly poor performance.
There are a number of techniques to handle this scenario. One common solution is to create an array or collection that contains the values to be retrieved, and a parallel array that contains random floating-point numbers. The second array is populated with random numbers at the time the first array is created, and the Array.Sort(Array, Array) method is used to sort the first array by using the values in the parallel array.
For example, if you're developing a Solitaire game, you want to ensure that each card is used only once. Instead of generating random numbers to retrieve a card and tracking whether that card has already been dealt, you can create a parallel array of random numbers that can be used to sort the deck. Once the deck is sorted, your app can maintain a pointer to indicate the index of the next card on the deck.
The following example illustrates this approach. It defines a Card
class that represents a playing card and a Dealer
class that deals a deck of shuffled cards. The Dealer
class constructor populates two arrays: a deck
array that has class scope and that represents all the cards in the deck; and a local order
array that has the same number of elements as the deck
array and is populated with randomly generated Double values. The Array.Sort(Array, Array) method is then called to sort the deck
array based on the values in the order
array.
using System;
// A class that represents an individual card in a playing deck.
public class Card
{
public Suit Suit;
public FaceValue FaceValue;
public override String ToString()
{
return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
}
}
public enum Suit { Hearts, Diamonds, Spades, Clubs };
public enum FaceValue
{
Ace = 1, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack, Queen,
King
};
public class Dealer
{
Random rnd;
// A deck of cards, without Jokers.
Card[] deck = new Card[52];
// Parallel array for sorting cards.
Double[] order = new Double[52];
// A pointer to the next card to deal.
int ptr = 0;
// A flag to indicate the deck is used.
bool mustReshuffle = false;
public Dealer()
{
rnd = new Random();
// Initialize the deck.
int deckCtr = 0;
foreach (var suit in Enum.GetValues(typeof(Suit)))
{
foreach (var faceValue in Enum.GetValues(typeof(FaceValue)))
{
Card card = new Card();
card.Suit = (Suit)suit;
card.FaceValue = (FaceValue)faceValue;
deck[deckCtr] = card;
deckCtr++;
}
}
for (int ctr = 0; ctr < order.Length; ctr++)
order[ctr] = rnd.NextDouble();
Array.Sort(order, deck);
}
public Card[] Deal(int numberToDeal)
{
if (mustReshuffle)
{
Console.WriteLine("There are no cards left in the deck");
return null;
}
Card[] cardsDealt = new Card[numberToDeal];
for (int ctr = 0; ctr < numberToDeal; ctr++)
{
cardsDealt[ctr] = deck[ptr];
ptr++;
if (ptr == deck.Length)
mustReshuffle = true;
if (mustReshuffle & ctr < numberToDeal - 1)
{
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1);
return cardsDealt;
}
}
return cardsDealt;
}
}
public class Example17
{
public static void Main()
{
Dealer dealer = new Dealer();
ShowCards(dealer.Deal(20));
}
private static void ShowCards(Card[] cards)
{
foreach (var card in cards)
if (card != null)
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
}
}
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
open System
type Suit =
| Clubs
| Diamonds
| Hearts
| Spades
type Face =
| Ace | Two | Three
| Four | Five | Six
| Seven | Eight | Nine
| Ten | Jack | Queen | King
type Card = { Face: Face; Suit: Suit }
let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]
type Dealer() =
let rnd = Random()
let mutable pos = 0
// Parallel array for sorting cards.
let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
// A deck of cards, without Jokers.
let deck = [|
for s in suits do
for f in faces do
{ Face = f; Suit = s } |]
// Shuffle the deck.
do Array.Sort(order, deck)
// Deal a number of cards from the deck, return None if failed
member _.Deal(numberToDeal) : Card [] option =
if numberToDeal = 0 || pos = deck.Length then
printfn "There are no cards left in the deck"
None
else
let cards = deck.[pos .. numberToDeal + pos - 1]
if numberToDeal > deck.Length - pos then
printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
pos <- min (pos + numberToDeal) deck.Length
Some cards
let showCards cards =
for card in cards do
printfn $"{card.Face} of {card.Suit}"
let dealer = Dealer()
dealer.Deal 20
|> Option.iter showCards
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
Public Suit As Suit
Public FaceValue As FaceValue
Public Overrides Function ToString() As String
Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
End Function
End Class
Public Enum Suit As Integer
Hearts = 0
Diamonds = 1
Spades = 2
Clubs = 3
End Enum
Public Enum FaceValue As Integer
Ace = 1
Two = 2
Three = 3
Four = 4
Five = 5
Six = 6
Seven = 7
Eight = 8
Nine = 9
Ten = 10
Jack = 11
Queen = 12
King = 13
End Enum
Public Class Dealer
Dim rnd As Random
' A deck of cards, without Jokers.
Dim deck(51) As Card
' Parallel array for sorting cards.
Dim order(51) As Double
' A pointer to the next card to deal.
Dim ptr As Integer = 0
' A flag to indicate the deck is used.
Dim mustReshuffle As Boolean
Public Sub New()
rnd = New Random()
' Initialize the deck.
Dim deckCtr As Integer = 0
For Each Suit In [Enum].GetValues(GetType(Suit))
For Each faceValue In [Enum].GetValues(GetType(FaceValue))
Dim card As New Card()
card.Suit = CType(Suit, Suit)
card.FaceValue = CType(faceValue, FaceValue)
deck(deckCtr) = card
deckCtr += 1
Next
Next
For ctr As Integer = 0 To order.Length - 1
order(ctr) = rnd.NextDouble()
Next
Array.Sort(order, deck)
End Sub
Public Function Deal(numberToDeal As Integer) As Card()
If mustReshuffle Then
Console.WriteLine("There are no cards left in the deck")
Return Nothing
End If
Dim cardsDealt(numberToDeal - 1) As Card
For ctr As Integer = 0 To numberToDeal - 1
cardsDealt(ctr) = deck(ptr)
ptr += 1
If ptr = deck.Length Then
mustReshuffle = True
End If
If mustReshuffle And ctr < numberToDeal - 1
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1)
Return cardsDealt
End If
Next
Return cardsDealt
End Function
End Class
Public Module Example
Public Sub Main()
Dim dealer As New Dealer()
ShowCards(dealer.Deal(20))
End Sub
Private Sub ShowCards(cards() As Card)
For Each card In cards
If card IsNot Nothing Then _
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
Next
End Sub
End Module
' The example displays output like the following:
' Six of Diamonds
' King of Clubs
' Eight of Clubs
' Seven of Clubs
' Queen of Clubs
' King of Hearts
' Three of Spades
' Ace of Clubs
' Four of Hearts
' Three of Diamonds
' Nine of Diamonds
' Two of Hearts
' Ace of Hearts
' Three of Hearts
' Four of Spades
' Eight of Hearts
' Queen of Diamonds
' Two of Clubs
' Four of Diamonds
' Jack of Hearts