LLMClientOptions interface
Options for an LLMClient instance.
Properties
end |
Optional handler to run when a stream is about to conclude. |
history_variable | Optional. Memory variable used for storing conversation history. |
input_variable | Optional. Memory variable used for storing the users input message. |
log |
Optional. If true, any repair attempts will be logged to the console. |
max_history_messages | Optional. Maximum number of conversation history messages to maintain. |
max_repair_attempts | Optional. Maximum number of automatic repair attempts the LLMClient instance will make. |
model | AI model to use for completing prompts. |
start |
Optional message to send a client at the start of a streaming response. |
template | Prompt to use for the conversation. |
tokenizer | Optional. Tokenizer to use when rendering the prompt or counting tokens. |
validator | Optional. Response validator to use when completing prompts. |
Property Details
endStreamHandler
Optional handler to run when a stream is about to conclude.
endStreamHandler?: PromptCompletionModelResponseReceivedEvent
Property Value
history_variable
Optional. Memory variable used for storing conversation history.
history_variable?: string
Property Value
string
Remarks
The history will be stored as a Message[]
and the variable defaults to conversation.history
.
input_variable
Optional. Memory variable used for storing the users input message.
input_variable?: string
Property Value
string
Remarks
The users input is expected to be a string
but it's optional and defaults to temp.input
.
logRepairs
Optional. If true, any repair attempts will be logged to the console.
logRepairs?: boolean
Property Value
boolean
max_history_messages
Optional. Maximum number of conversation history messages to maintain.
max_history_messages?: number
Property Value
number
Remarks
The number of tokens worth of history included in the prompt is controlled by the
ConversationHistory
section of the prompt. This controls the automatic pruning of the
conversation history that's done by the LLMClient instance. This helps keep your memory from
getting too big and defaults to a value of 10
(or 5 turns.)
max_repair_attempts
Optional. Maximum number of automatic repair attempts the LLMClient instance will make.
max_repair_attempts?: number
Property Value
number
Remarks
This defaults to a value of 3
and can be set to 0
if you wish to disable repairing of bad responses.
model
AI model to use for completing prompts.
model: PromptCompletionModel
Property Value
startStreamingMessage
Optional message to send a client at the start of a streaming response.
startStreamingMessage?: string
Property Value
string
template
tokenizer
Optional. Tokenizer to use when rendering the prompt or counting tokens.
tokenizer?: Tokenizer
Property Value
Remarks
If not specified, a new instance of GPTTokenizer
will be created. GPT3Tokenizer can be passed in for gpt-3 models.
validator
Optional. Response validator to use when completing prompts.
validator?: PromptResponseValidator<TContent>
Property Value
PromptResponseValidator<TContent>
Remarks
If not specified a new instance of DefaultResponseValidator
will be created. The
DefaultResponseValidator returns a Validation
that says all responses are valid.