WorksheetFunction.Confidence_Norm Method
Returns a value that you can use to construct a confidence interval for a population mean.
Namespace: Microsoft.Office.Interop.Excel
Assembly: Microsoft.Office.Interop.Excel (in Microsoft.Office.Interop.Excel.dll)
Syntax
'Declaration
Function Confidence_Norm ( _
Arg1 As Double, _
Arg2 As Double, _
Arg3 As Double _
) As Double
'Usage
Dim instance As WorksheetFunction
Dim Arg1 As Double
Dim Arg2 As Double
Dim Arg3 As Double
Dim returnValue As Double
returnValue = instance.Confidence_Norm(Arg1, _
Arg2, Arg3)
double Confidence_Norm(
double Arg1,
double Arg2,
double Arg3
)
Parameters
Arg1
Type: System.DoubleThe significance level used to compute the confidence level. The confidence level equals 100*(1 - alpha)%, or in other words, an alpha of 0.05 indicates a 95 percent confidence level.
Arg2
Type: System.DoubleThe population standard deviation for the data range and is assumed to be known.
Arg3
Type: System.DoubleThe sample size.
Return Value
Type: System.Double
Remarks
The confidence interval is a range of values. Your sample mean, x, is at the center of this range and the range is x ± Confidence_Norm. For example, if x is the sample mean of delivery times for products ordered through the mail, x ± Confidence_Norm is a range of population means. For any population mean, μ0, in this range, the probability of obtaining a sample mean further from μ0 than x is greater than alpha; for any population mean, μ0, not in this range, the probability of obtaining a sample mean further from μ0 than x is less than alpha. In other words, assume that x, standard_dev, and size is used to construct a two-tailed test at significance level alpha of the hypothesis that the population mean is μ0. Then we will not reject that hypothesis if μ0 is in the confidence interval and will reject that hypothesis if μ0 is not in the confidence interval. The confidence interval does not allow inference that there is probability 1 – alpha that the next package will take a delivery time that is in the confidence interval.
If any argument is nonnumeric, Confidence_Norm generates an error.
If alpha ≤ 0 or alpha ≥ 1, Confidence_Norm generates an error.
If standard_dev ≤ 0, Confidence_Norm generates an error.
If size is not an integer, it is truncated.
If size < 1, Confidence_Norm generates an error.
If it is assumed that alpha equals 0.05, calculate the area under the standard normal curve that equals (1 - alpha), or 95 percent. This value is ± 1.96. The confidence interval is therefore:
Figure 1: Confidence interval