Share via


ChatMessage Class

Represents a chat message.

Initialize ChatMessage.

Constructor

ChatMessage()

Parameters

Name Description
role
Required

The role of the author of the message (Role, string, or dict).

Keyword-Only Parameters

Name Description
text

Optional text content of the message.

Default value: None
contents

Optional list of BaseContent items or dicts to include in the message.

Default value: None
author_name

Optional name of the author of the message.

Default value: None
message_id

Optional ID of the chat message.

Default value: None
additional_properties

Optional additional properties associated with the chat message. Additional properties are used within Agent Framework, they are not sent to services.

Default value: None
raw_representation

Optional raw representation of the chat message.

Default value: None
kwargs

will be combined with additional_properties if provided.

Examples


   from agent_framework import ChatMessage, TextContent

   # Create a message with text
   user_msg = ChatMessage(role="user", text="What's the weather?")
   print(user_msg.text)  # "What's the weather?"

   # Create a message with role string
   system_msg = ChatMessage(role="system", text="You are a helpful assistant.")

   # Create a message with contents
   assistant_msg = ChatMessage(
       role="assistant",
       contents=[TextContent(text="The weather is sunny!")],
   )
   print(assistant_msg.text)  # "The weather is sunny!"

   # Serialization - to_dict and from_dict
   msg_dict = user_msg.to_dict()
   # {'type': 'chat_message', 'role': {'type': 'role', 'value': 'user'},
   #  'contents': [{'type': 'text', 'text': "What's the weather?"}], 'additional_properties': {}}
   restored_msg = ChatMessage.from_dict(msg_dict)
   print(restored_msg.text)  # "What's the weather?"

   # Serialization - to_json and from_json
   msg_json = user_msg.to_json()
   # '{"type": "chat_message", "role": {"type": "role", "value": "user"}, "contents": [...], ...}'
   restored_from_json = ChatMessage.from_json(msg_json)
   print(restored_from_json.role.value)  # "user"

Methods

__init__

Initialize ChatMessage.

__new__
from_dict

Create an instance from a dictionary with optional dependency injection.

This method reconstructs an object from its dictionary representation, automatically handling type conversion and dependency injection. It supports three patterns of dependency injection to handle different scenarios where external dependencies need to be provided at deserialization time.

from_json

Create an instance from a JSON string.

This is a convenience method that parses the JSON string using json.loads() and then calls from_dict() to reconstruct the object. All dependency injection capabilities are available through the dependencies parameter.

to_dict

Convert the instance and any nested objects to a dictionary.

This method performs deep serialization, automatically converting nested SerializationProtocol objects, lists, and dictionaries containing serializable objects. Non-serializable objects are skipped with debug logging.

Fields marked in DEFAULT_EXCLUDE and INJECTABLE are automatically excluded from the output, as are any private attributes (starting with '_').

to_json

Convert the instance to a JSON string.

This is a convenience method that calls to_dict() and then serializes the result using json.dumps(). All the same serialization rules apply as in to_dict(), including automatic exclusion of injectable dependencies and deep serialization of nested objects.

__init__

Initialize ChatMessage.

__init__(role: Role | Literal['system', 'user', 'assistant', 'tool'], *, text: str, author_name: str | None = None, message_id: str | None = None, additional_properties: MutableMapping[str, Any] | None = None, raw_representation: Any | None = None, **kwargs: Any) -> None

Parameters

Name Description
role
Required

The role of the author of the message (Role, string, or dict).

Keyword-Only Parameters

Name Description
text

Optional text content of the message.

Default value: None
contents

Optional list of BaseContent items or dicts to include in the message.

Default value: None
author_name

Optional name of the author of the message.

Default value: None
message_id

Optional ID of the chat message.

Default value: None
additional_properties

Optional additional properties associated with the chat message. Additional properties are used within Agent Framework, they are not sent to services.

Default value: None
raw_representation

Optional raw representation of the chat message.

Default value: None
kwargs

will be combined with additional_properties if provided.

__new__

__new__(**kwargs)

from_dict

Create an instance from a dictionary with optional dependency injection.

This method reconstructs an object from its dictionary representation, automatically handling type conversion and dependency injection. It supports three patterns of dependency injection to handle different scenarios where external dependencies need to be provided at deserialization time.

from_dict()

Positional-Only Parameters

Name Description
value
Required

Parameters

Name Description
value
Required

The dictionary containing the instance data (positional-only). Must include a 'type' field matching the class type identifier.

dependencies
Required

Keyword-Only Parameters

Name Description
dependencies

A nested dictionary mapping type identifiers to their injectable dependencies. The structure varies based on injection pattern:

  • Simple injection: {"<type>": {"<parameter>": value}}

  • Dict parameter injection: {"<type>": {"<dict-parameter>": {"<key>": value}}}

  • Instance-specific injection: {"<type>": {"<field>:<value>": {"<parameter>": value}}}

Default value: None

Returns

Type Description
<xref:agent_framework._serialization.TClass>

New instance of the class with injected dependencies.

Exceptions

Type Description

If the 'type' field in the data doesn't match the class type identifier.

Examples

Simple Client Injection - OpenAI client dependency injection:


   from agent_framework.openai import OpenAIChatClient
   from openai import AsyncOpenAI


   # OpenAI chat client requires an AsyncOpenAI client instance
   # The client is marked as INJECTABLE = {"client"} in OpenAIBase

   # Serialized data contains only the model configuration
   client_data = {
       "type": "open_ai_chat_client",
       "model_id": "gpt-4o-mini",
       # client is excluded from serialization
   }

   # Provide the OpenAI client during deserialization
   openai_client = AsyncOpenAI(api_key="your-api-key")
   dependencies = {"open_ai_chat_client": {"client": openai_client}}

   # The chat client is reconstructed with the OpenAI client injected
   chat_client = OpenAIChatClient.from_dict(client_data, dependencies=dependencies)
   # Now ready to make API calls with the injected client

Function Injection for Tools - AIFunction runtime dependency:


   from agent_framework import AIFunction
   from typing import Annotated


   # Define a function to be wrapped
   async def get_current_weather(location: Annotated[str, "The city name"]) -> str:
       # In real implementation, this would call a weather API
       return f"Current weather in {location}: 72°F and sunny"


   # AIFunction has INJECTABLE = {"func"}
   function_data = {
       "type": "ai_function",
       "name": "get_weather",
       "description": "Get current weather for a location",
       # func is excluded from serialization
   }

   # Inject the actual function implementation during deserialization
   dependencies = {"ai_function": {"func": get_current_weather}}

   # Reconstruct the AIFunction with the callable injected
   weather_func = AIFunction.from_dict(function_data, dependencies=dependencies)
   # The function is now callable and ready for agent use

Middleware Context Injection - Agent execution context:


   from agent_framework._middleware import AgentRunContext
   from agent_framework import BaseAgent

   # AgentRunContext has INJECTABLE = {"agent", "result"}
   context_data = {
       "type": "agent_run_context",
       "messages": [{"role": "user", "text": "Hello"}],
       "is_streaming": False,
       "metadata": {"session_id": "abc123"},
       # agent and result are excluded from serialization
   }

   # Inject agent and result during middleware processing
   my_agent = BaseAgent(name="test-agent")
   dependencies = {
       "agent_run_context": {
           "agent": my_agent,
           "result": None,  # Will be populated during execution
       }
   }

   # Reconstruct context with agent dependency for middleware chain
   context = AgentRunContext.from_dict(context_data, dependencies=dependencies)
   # Middleware can now access context.agent and process the execution

This injection system allows the agent framework to maintain clean separation between serializable configuration and runtime dependencies like API clients, functions, and execution contexts that cannot or should not be persisted.

from_json

Create an instance from a JSON string.

This is a convenience method that parses the JSON string using json.loads() and then calls from_dict() to reconstruct the object. All dependency injection capabilities are available through the dependencies parameter.

from_json()

Positional-Only Parameters

Name Description
value
Required

Parameters

Name Description
value
Required
str

The JSON string containing the instance data (positional-only). Must be valid JSON that deserializes to a dictionary with a 'type' field.

dependencies
Required

Keyword-Only Parameters

Name Description
dependencies

A nested dictionary mapping type identifiers to their injectable dependencies. See from_dict for detailed structure and examples of the three injection patterns (simple, dict parameter, and instance-specific).

Default value: None

Returns

Type Description
<xref:agent_framework._serialization.TClass>

New instance of the class with any specified dependencies injected.

Exceptions

Type Description

If the JSON string is malformed.

If the parsed data doesn't contain a valid 'type' field.

to_dict

Convert the instance and any nested objects to a dictionary.

This method performs deep serialization, automatically converting nested SerializationProtocol objects, lists, and dictionaries containing serializable objects. Non-serializable objects are skipped with debug logging.

Fields marked in DEFAULT_EXCLUDE and INJECTABLE are automatically excluded from the output, as are any private attributes (starting with '_').

to_dict(*, exclude: set[str] | None = None, exclude_none: bool = True) -> dict[str, Any]

Parameters

Name Description
exclude
Required
set[str] | None
exclude_none
Required

Keyword-Only Parameters

Name Description
exclude

Additional field names to exclude from serialization beyond the default exclusions (DEFAULT_EXCLUDE and INJECTABLE).

Default value: None
exclude_none

Whether to exclude None values from the output. When True, None values are omitted from the dictionary. Defaults to True.

Default value: True

Returns

Type Description

Dictionary representation of the instance including a 'type' field for type identification during deserialization (unless 'type' is excluded).

to_json

Convert the instance to a JSON string.

This is a convenience method that calls to_dict() and then serializes the result using json.dumps(). All the same serialization rules apply as in to_dict(), including automatic exclusion of injectable dependencies and deep serialization of nested objects.

to_json(*, exclude: set[str] | None = None, exclude_none: bool = True, **kwargs: Any) -> str

Parameters

Name Description
exclude
Required
set[str] | None
exclude_none
Required
kwargs
Required
Any

Keyword-Only Parameters

Name Description
exclude

Additional field names to exclude from serialization.

Default value: None
exclude_none

Whether to exclude None values from the output. Defaults to True.

Default value: True
**kwargs

Additional keyword arguments passed through to json.dumps(). Common options include indent for pretty-printing and ensure_ascii for Unicode handling.

Returns

Type Description
str

JSON string representation of the instance.

Attributes

text

Returns the text content of the message.

Remarks: This property concatenates the text of all TextContent objects in Contents.

role

The role of the author of the message.

contents

The chat message content items.

author_name

The name of the author of the message.

message_id

The ID of the chat message.

additional_properties

Any additional properties associated with the chat message. Additional properties are used within Agent Framework, they are not sent to services.

raw_representation

The raw representation of the chat message from an underlying implementation.

DEFAULT_EXCLUDE

DEFAULT_EXCLUDE: ClassVar[set[str]] = {'raw_representation'}

INJECTABLE

INJECTABLE: ClassVar[set[str]] = {}