Share via


TextContent Class

Represents text content in a chat.

Initializes a TextContent instance.

Constructor

TextContent()

Parameters

Name Description
text
Required

The text content represented by this instance.

Keyword-Only Parameters

Name Description
additional_properties

Optional additional properties associated with the content.

Default value: None
raw_representation

Optional raw representation of the content.

Default value: None
annotations

Optional annotations associated with the content.

Default value: None
**kwargs

Any additional keyword arguments.

Examples


   from agent_framework import TextContent

   # Create basic text content
   text = TextContent(text="Hello, world!")
   print(text.text)  # "Hello, world!"

   # Concatenate text content
   text1 = TextContent(text="Hello, ")
   text2 = TextContent(text="world!")
   combined = text1 + text2
   print(combined.text)  # "Hello, world!"

Methods

__init__

Initializes a TextContent instance.

__new__
from_dict

Create an instance from a dictionary with optional dependency injection.

This method reconstructs an object from its dictionary representation, automatically handling type conversion and dependency injection. It supports three patterns of dependency injection to handle different scenarios where external dependencies need to be provided at deserialization time.

from_json

Create an instance from a JSON string.

This is a convenience method that parses the JSON string using json.loads() and then calls from_dict() to reconstruct the object. All dependency injection capabilities are available through the dependencies parameter.

to_dict

Convert the instance to a dictionary.

Extracts additional_properties fields to the root level.

to_json

Convert the instance to a JSON string.

This is a convenience method that calls to_dict() and then serializes the result using json.dumps(). All the same serialization rules apply as in to_dict(), including automatic exclusion of injectable dependencies and deep serialization of nested objects.

__init__

Initializes a TextContent instance.

__init__(text: str, *, additional_properties: dict[str, Any] | None = None, raw_representation: Any | None = None, annotations: Sequence[CitationAnnotation | MutableMapping[str, Any]] | None = None, **kwargs: Any)

Parameters

Name Description
text
Required
str

The text content represented by this instance.

additional_properties
Required
raw_representation
Required
Any | None
annotations
Required
kwargs
Required
Any

Keyword-Only Parameters

Name Description
additional_properties

Optional additional properties associated with the content.

Default value: None
raw_representation

Optional raw representation of the content.

Default value: None
annotations

Optional annotations associated with the content.

Default value: None
**kwargs

Any additional keyword arguments.

__new__

__new__(**kwargs)

from_dict

Create an instance from a dictionary with optional dependency injection.

This method reconstructs an object from its dictionary representation, automatically handling type conversion and dependency injection. It supports three patterns of dependency injection to handle different scenarios where external dependencies need to be provided at deserialization time.

from_dict()

Positional-Only Parameters

Name Description
value
Required

Parameters

Name Description
value
Required

The dictionary containing the instance data (positional-only). Must include a 'type' field matching the class type identifier.

dependencies
Required

Keyword-Only Parameters

Name Description
dependencies

A nested dictionary mapping type identifiers to their injectable dependencies. The structure varies based on injection pattern:

  • Simple injection: {"<type>": {"<parameter>": value}}

  • Dict parameter injection: {"<type>": {"<dict-parameter>": {"<key>": value}}}

  • Instance-specific injection: {"<type>": {"<field>:<value>": {"<parameter>": value}}}

Default value: None

Returns

Type Description
<xref:agent_framework._serialization.TClass>

New instance of the class with injected dependencies.

Exceptions

Type Description

If the 'type' field in the data doesn't match the class type identifier.

Examples

Simple Client Injection - OpenAI client dependency injection:


   from agent_framework.openai import OpenAIChatClient
   from openai import AsyncOpenAI


   # OpenAI chat client requires an AsyncOpenAI client instance
   # The client is marked as INJECTABLE = {"client"} in OpenAIBase

   # Serialized data contains only the model configuration
   client_data = {
       "type": "open_ai_chat_client",
       "model_id": "gpt-4o-mini",
       # client is excluded from serialization
   }

   # Provide the OpenAI client during deserialization
   openai_client = AsyncOpenAI(api_key="your-api-key")
   dependencies = {"open_ai_chat_client": {"client": openai_client}}

   # The chat client is reconstructed with the OpenAI client injected
   chat_client = OpenAIChatClient.from_dict(client_data, dependencies=dependencies)
   # Now ready to make API calls with the injected client

Function Injection for Tools - AIFunction runtime dependency:


   from agent_framework import AIFunction
   from typing import Annotated


   # Define a function to be wrapped
   async def get_current_weather(location: Annotated[str, "The city name"]) -> str:
       # In real implementation, this would call a weather API
       return f"Current weather in {location}: 72°F and sunny"


   # AIFunction has INJECTABLE = {"func"}
   function_data = {
       "type": "ai_function",
       "name": "get_weather",
       "description": "Get current weather for a location",
       # func is excluded from serialization
   }

   # Inject the actual function implementation during deserialization
   dependencies = {"ai_function": {"func": get_current_weather}}

   # Reconstruct the AIFunction with the callable injected
   weather_func = AIFunction.from_dict(function_data, dependencies=dependencies)
   # The function is now callable and ready for agent use

Middleware Context Injection - Agent execution context:


   from agent_framework._middleware import AgentRunContext
   from agent_framework import BaseAgent

   # AgentRunContext has INJECTABLE = {"agent", "result"}
   context_data = {
       "type": "agent_run_context",
       "messages": [{"role": "user", "text": "Hello"}],
       "is_streaming": False,
       "metadata": {"session_id": "abc123"},
       # agent and result are excluded from serialization
   }

   # Inject agent and result during middleware processing
   my_agent = BaseAgent(name="test-agent")
   dependencies = {
       "agent_run_context": {
           "agent": my_agent,
           "result": None,  # Will be populated during execution
       }
   }

   # Reconstruct context with agent dependency for middleware chain
   context = AgentRunContext.from_dict(context_data, dependencies=dependencies)
   # Middleware can now access context.agent and process the execution

This injection system allows the agent framework to maintain clean separation between serializable configuration and runtime dependencies like API clients, functions, and execution contexts that cannot or should not be persisted.

from_json

Create an instance from a JSON string.

This is a convenience method that parses the JSON string using json.loads() and then calls from_dict() to reconstruct the object. All dependency injection capabilities are available through the dependencies parameter.

from_json()

Positional-Only Parameters

Name Description
value
Required

Parameters

Name Description
value
Required
str

The JSON string containing the instance data (positional-only). Must be valid JSON that deserializes to a dictionary with a 'type' field.

dependencies
Required

Keyword-Only Parameters

Name Description
dependencies

A nested dictionary mapping type identifiers to their injectable dependencies. See from_dict for detailed structure and examples of the three injection patterns (simple, dict parameter, and instance-specific).

Default value: None

Returns

Type Description
<xref:agent_framework._serialization.TClass>

New instance of the class with any specified dependencies injected.

Exceptions

Type Description

If the JSON string is malformed.

If the parsed data doesn't contain a valid 'type' field.

to_dict

Convert the instance to a dictionary.

Extracts additional_properties fields to the root level.

to_dict(*, exclude: set[str] | None = None, exclude_none: bool = True) -> dict[str, Any]

Parameters

Name Description
exclude
Required
set[str] | None
exclude_none
Required

Keyword-Only Parameters

Name Description
exclude

Set of field names to exclude from serialization.

Default value: None
exclude_none

Whether to exclude None values from the output. Defaults to True.

Default value: True

Returns

Type Description

Dictionary representation of the instance.

to_json

Convert the instance to a JSON string.

This is a convenience method that calls to_dict() and then serializes the result using json.dumps(). All the same serialization rules apply as in to_dict(), including automatic exclusion of injectable dependencies and deep serialization of nested objects.

to_json(*, exclude: set[str] | None = None, exclude_none: bool = True, **kwargs: Any) -> str

Parameters

Name Description
exclude
Required
set[str] | None
exclude_none
Required
kwargs
Required
Any

Keyword-Only Parameters

Name Description
exclude

Additional field names to exclude from serialization.

Default value: None
exclude_none

Whether to exclude None values from the output. Defaults to True.

Default value: True
**kwargs

Additional keyword arguments passed through to json.dumps(). Common options include indent for pretty-printing and ensure_ascii for Unicode handling.

Returns

Type Description
str

JSON string representation of the instance.

Attributes

text

The text content represented by this instance.

type

The type of content, which is always "text" for this class.

annotations

Optional annotations associated with the content.

annotations: list[CitationAnnotation] | None

additional_properties

Optional additional properties associated with the content.

raw_representation

Optional raw representation of the content.

DEFAULT_EXCLUDE

DEFAULT_EXCLUDE: ClassVar[set[str]] = {'additional_properties', 'raw_representation'}

INJECTABLE

INJECTABLE: ClassVar[set[str]] = {}