CompactedResponse Class
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Constructor
CompactedResponse(**data: Any)
Methods
| construct | |
| copy |
Returns a copy of the model. !!! warning "Deprecated" This method is now deprecated; use model_copy instead. If you need include or exclude, use:
|
| dict | |
| from_orm | |
| json | |
| model_construct | |
| model_copy |
!!! abstract "Usage Documentation" model_copy Returns a copy of the model. !!! note The underlying instance's [dict][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]). |
| model_dump |
!!! abstract "Usage Documentation" model_dump Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. |
| model_dump_json |
!!! abstract "Usage Documentation" model_dump_json Generates a JSON representation of the model using Pydantic's to_json method. |
| model_json_schema |
Generates a JSON schema for a model class. |
| model_parametrized_name |
Compute the class name for parametrizations of generic classes. This method can be overridden to achieve a custom naming scheme for generic BaseModels. |
| model_post_init |
Override this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized. |
| model_rebuild |
Try to rebuild the pydantic-core schema for the model. This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. |
| model_validate |
Validate a pydantic model instance. |
| model_validate_json |
!!! abstract "Usage Documentation" JSON Parsing Validate the given JSON data against the Pydantic model. |
| model_validate_strings |
Validate the given object with string data against the Pydantic model. |
| parse_file | |
| parse_obj | |
| parse_raw | |
| schema | |
| schema_json | |
| to_dict |
Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude. By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model. For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed). |
| to_json |
Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation). By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model. For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed). |
| update_forward_refs | |
| validate |
construct
construct(_fields_set: set[str] | None = None, **values: object) -> ModelT
Parameters
| Name | Description |
|---|---|
|
_fields_set
|
Default value: None
|
copy
Returns a copy of the model.
!!! warning "Deprecated" This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data)
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) -> Self
Parameters
| Name | Description |
|---|---|
|
include
Required
|
Optional set or mapping specifying which fields to include in the copied model. |
|
exclude
Required
|
Optional set or mapping specifying which fields to exclude in the copied model. |
|
update
Required
|
Optional dictionary of field-value pairs to override field values in the copied model. |
|
deep
Required
|
If True, the values of fields that are Pydantic models will be deep-copied. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
include
|
Default value: None
|
|
exclude
|
Default value: None
|
|
update
|
Default value: None
|
|
deep
|
Default value: False
|
Returns
| Type | Description |
|---|---|
|
A copy of the model with included, excluded and updated fields as specified. |
dict
dict(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) -> Dict[str, Any]
Keyword-Only Parameters
| Name | Description |
|---|---|
|
include
|
Default value: None
|
|
exclude
|
Default value: None
|
|
by_alias
|
Default value: False
|
|
exclude_unset
|
Default value: False
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
from_orm
from_orm(obj: Any) -> Self
Parameters
| Name | Description |
|---|---|
|
obj
Required
|
|
json
json(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) -> str
Keyword-Only Parameters
| Name | Description |
|---|---|
|
include
|
Default value: None
|
|
exclude
|
Default value: None
|
|
by_alias
|
Default value: False
|
|
exclude_unset
|
Default value: False
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
|
encoder
|
Default value: PydanticUndefined
|
|
models_as_dict
|
Default value: PydanticUndefined
|
model_construct
model_construct(_fields_set: set[str] | None = None, **values: object) -> ModelT
Parameters
| Name | Description |
|---|---|
|
_fields_set
|
Default value: None
|
model_copy
!!! abstract "Usage Documentation" model_copy
Returns a copy of the model.
!!! note The underlying instance's [dict][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self
Parameters
| Name | Description |
|---|---|
|
update
Required
|
Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. |
|
deep
Required
|
Set to True to make a deep copy of the model. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
update
|
Default value: None
|
|
deep
|
Default value: False
|
Returns
| Type | Description |
|---|---|
|
New model instance. |
model_dump
!!! abstract "Usage Documentation" model_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, exclude_computed_fields: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) -> dict[str, Any]
Parameters
| Name | Description |
|---|---|
|
mode
Required
|
The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. |
|
include
Required
|
A set of fields to include in the output. |
|
exclude
Required
|
A set of fields to exclude from the output. |
|
context
Required
|
Additional context to pass to the serializer. |
|
by_alias
Required
|
Whether to use the field's alias in the dictionary key if defined. |
|
exclude_unset
Required
|
Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults
Required
|
Whether to exclude fields that are set to their default value. |
|
exclude_none
Required
|
Whether to exclude fields that have a value of None. |
|
exclude_computed_fields
Required
|
Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
|
round_trip
Required
|
If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
|
warnings
Required
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
|
fallback
Required
|
A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
|
serialize_as_any
Required
|
Whether to serialize fields with duck-typing serialization behavior. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
mode
|
Default value: python
|
|
include
|
Default value: None
|
|
exclude
|
Default value: None
|
|
context
|
Default value: None
|
|
by_alias
|
Default value: None
|
|
exclude_unset
|
Default value: False
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
|
exclude_computed_fields
|
Default value: False
|
|
round_trip
|
Default value: False
|
|
warnings
|
Default value: True
|
|
fallback
|
Default value: None
|
|
serialize_as_any
|
Default value: False
|
Returns
| Type | Description |
|---|---|
|
A dictionary representation of the model. |
model_dump_json
!!! abstract "Usage Documentation" model_dump_json
Generates a JSON representation of the model using Pydantic's to_json method.
model_dump_json(*, indent: int | None = None, ensure_ascii: bool = False, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, exclude_computed_fields: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) -> str
Parameters
| Name | Description |
|---|---|
|
indent
Required
|
Indentation to use in the JSON output. If None is passed, the output will be compact. |
|
ensure_ascii
Required
|
If True, the output is guaranteed to have all incoming non-ASCII characters escaped. If False (the default), these characters will be output as-is. |
|
include
Required
|
Field(s) to include in the JSON output. |
|
exclude
Required
|
Field(s) to exclude from the JSON output. |
|
context
Required
|
Additional context to pass to the serializer. |
|
by_alias
Required
|
Whether to serialize using field aliases. |
|
exclude_unset
Required
|
Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults
Required
|
Whether to exclude fields that are set to their default value. |
|
exclude_none
Required
|
Whether to exclude fields that have a value of None. |
|
exclude_computed_fields
Required
|
Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead. |
|
round_trip
Required
|
If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
|
warnings
Required
|
How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError]. |
|
fallback
Required
|
A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised. |
|
serialize_as_any
Required
|
Whether to serialize fields with duck-typing serialization behavior. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
indent
|
Default value: None
|
|
ensure_ascii
|
Default value: False
|
|
include
|
Default value: None
|
|
exclude
|
Default value: None
|
|
context
|
Default value: None
|
|
by_alias
|
Default value: None
|
|
exclude_unset
|
Default value: False
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
|
exclude_computed_fields
|
Default value: False
|
|
round_trip
|
Default value: False
|
|
warnings
|
Default value: True
|
|
fallback
|
Default value: None
|
|
serialize_as_any
|
Default value: False
|
Returns
| Type | Description |
|---|---|
|
A JSON string representation of the model. |
model_json_schema
Generates a JSON schema for a model class.
model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation', *, union_format: ~typing.Literal['any_of', 'primitive_type_array'] = 'any_of') -> dict[str, Any]
Parameters
| Name | Description |
|---|---|
|
by_alias
|
Whether to use attribute aliases or not. Default value: True
|
|
ref_template
|
The reference template. Default value: #/$defs/{model}
|
|
union_format
Required
|
The format to use when combining schemas from unions together. Can be one of:
keyword to combine schemas (the default).
|
|
schema_generator
|
To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications Default value: <class 'pydantic.json_schema.GenerateJsonSchema'>
|
|
mode
|
The mode in which to generate the schema. Default value: validation
|
Keyword-Only Parameters
| Name | Description |
|---|---|
|
union_format
|
Default value: any_of
|
Returns
| Type | Description |
|---|---|
|
The JSON schema for the given model class. |
model_parametrized_name
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
model_parametrized_name(params: tuple[type[Any], ...]) -> str
Parameters
| Name | Description |
|---|---|
|
params
Required
|
Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params. |
Returns
| Type | Description |
|---|---|
|
String representing the new class where params are passed to cls as type variables. |
Exceptions
| Type | Description |
|---|---|
|
Raised when trying to generate concrete names for non-generic models. |
model_post_init
Override this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
model_post_init(context: Any, /) -> None
Positional-Only Parameters
| Name | Description |
|---|---|
|
context
Required
|
|
model_rebuild
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) -> bool | None
Parameters
| Name | Description |
|---|---|
|
force
Required
|
Whether to force the rebuilding of the model schema, defaults to False. |
|
raise_errors
Required
|
Whether to raise errors, defaults to True. |
|
_parent_namespace_depth
Required
|
The depth level of the parent namespace, defaults to 2. |
|
_types_namespace
Required
|
The types namespace, defaults to None. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
force
|
Default value: False
|
|
raise_errors
|
Default value: True
|
|
_parent_namespace_depth
|
Default value: 2
|
|
_types_namespace
|
Default value: None
|
Returns
| Type | Description |
|---|---|
|
Returns None if the schema is already "complete" and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False. |
model_validate
Validate a pydantic model instance.
model_validate(obj: Any, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self
Parameters
| Name | Description |
|---|---|
|
obj
Required
|
The object to validate. |
|
strict
Required
|
Whether to enforce types strictly. |
|
extra
Required
|
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
|
from_attributes
Required
|
Whether to extract data from object attributes. |
|
context
Required
|
Additional context to pass to the validator. |
|
by_alias
Required
|
Whether to use the field's alias when validating against the provided input data. |
|
by_name
Required
|
Whether to use the field's name when validating against the provided input data. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
strict
|
Default value: None
|
|
extra
|
Default value: None
|
|
from_attributes
|
Default value: None
|
|
context
|
Default value: None
|
|
by_alias
|
Default value: None
|
|
by_name
|
Default value: None
|
Returns
| Type | Description |
|---|---|
|
The validated model instance. |
Exceptions
| Type | Description |
|---|---|
|
ValidationError
|
If the object could not be validated. |
model_validate_json
!!! abstract "Usage Documentation" JSON Parsing
Validate the given JSON data against the Pydantic model.
model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self
Parameters
| Name | Description |
|---|---|
|
json_data
Required
|
The JSON data to validate. |
|
strict
Required
|
Whether to enforce types strictly. |
|
extra
Required
|
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
|
context
Required
|
Extra variables to pass to the validator. |
|
by_alias
Required
|
Whether to use the field's alias when validating against the provided input data. |
|
by_name
Required
|
Whether to use the field's name when validating against the provided input data. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
strict
|
Default value: None
|
|
extra
|
Default value: None
|
|
context
|
Default value: None
|
|
by_alias
|
Default value: None
|
|
by_name
|
Default value: None
|
Returns
| Type | Description |
|---|---|
|
The validated Pydantic model. |
Exceptions
| Type | Description |
|---|---|
|
ValidationError
|
If json_data is not a JSON string or the object could not be validated. |
model_validate_strings
Validate the given object with string data against the Pydantic model.
model_validate_strings(obj: Any, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self
Parameters
| Name | Description |
|---|---|
|
obj
Required
|
The object containing string data to validate. |
|
strict
Required
|
Whether to enforce types strictly. |
|
extra
Required
|
Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details. |
|
context
Required
|
Extra variables to pass to the validator. |
|
by_alias
Required
|
Whether to use the field's alias when validating against the provided input data. |
|
by_name
Required
|
Whether to use the field's name when validating against the provided input data. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
strict
|
Default value: None
|
|
extra
|
Default value: None
|
|
context
|
Default value: None
|
|
by_alias
|
Default value: None
|
|
by_name
|
Default value: None
|
Returns
| Type | Description |
|---|---|
|
The validated Pydantic model. |
parse_file
parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) -> Self
Parameters
| Name | Description |
|---|---|
|
path
Required
|
|
Keyword-Only Parameters
| Name | Description |
|---|---|
|
content_type
|
Default value: None
|
|
encoding
|
Default value: utf8
|
|
proto
|
Default value: None
|
|
allow_pickle
|
Default value: False
|
parse_obj
parse_obj(obj: Any) -> Self
Parameters
| Name | Description |
|---|---|
|
obj
Required
|
|
parse_raw
parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) -> Self
Parameters
| Name | Description |
|---|---|
|
b
Required
|
|
Keyword-Only Parameters
| Name | Description |
|---|---|
|
content_type
|
Default value: None
|
|
encoding
|
Default value: utf8
|
|
proto
|
Default value: None
|
|
allow_pickle
|
Default value: False
|
schema
schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') -> Dict[str, Any]
Parameters
| Name | Description |
|---|---|
|
by_alias
|
Default value: True
|
|
ref_template
|
Default value: #/$defs/{model}
|
schema_json
schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) -> str
Keyword-Only Parameters
| Name | Description |
|---|---|
|
by_alias
|
Default value: True
|
|
ref_template
|
Default value: #/$defs/{model}
|
to_dict
Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.
For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).
to_dict(*, mode: Literal['json', 'python'] = 'python', use_api_names: bool = True, exclude_unset: bool = True, exclude_defaults: bool = False, exclude_none: bool = False, warnings: bool = True) -> dict[str, object]
Parameters
| Name | Description |
|---|---|
|
mode
Required
|
If mode is 'json', the dictionary will only contain JSON serializable types. e.g. datetime will be turned into a string, "2024-3-22T18:11:19.117000Z". If mode is 'python', the dictionary may contain any Python objects. e.g. datetime(2024, 3, 22) |
|
use_api_names
Required
|
Whether to use the key that the API responded with or the property name. Defaults to True. |
|
exclude_unset
Required
|
Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults
Required
|
Whether to exclude fields that are set to their default value from the output. |
|
exclude_none
Required
|
Whether to exclude fields that have a value of None from the output. |
|
warnings
Required
|
Whether to log warnings when invalid fields are encountered. This is only supported in Pydantic v2. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
mode
|
Default value: python
|
|
use_api_names
|
Default value: True
|
|
exclude_unset
|
Default value: True
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
|
warnings
|
Default value: True
|
to_json
Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation).
By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.
For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).
to_json(*, indent: int | None = 2, use_api_names: bool = True, exclude_unset: bool = True, exclude_defaults: bool = False, exclude_none: bool = False, warnings: bool = True) -> str
Parameters
| Name | Description |
|---|---|
|
indent
Required
|
Indentation to use in the JSON output. If None is passed, the output will be compact. Defaults to 2 |
|
use_api_names
Required
|
Whether to use the key that the API responded with or the property name. Defaults to True. |
|
exclude_unset
Required
|
Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults
Required
|
Whether to exclude fields that have the default value. |
|
exclude_none
Required
|
Whether to exclude fields that have a value of None. |
|
warnings
Required
|
Whether to show any warnings that occurred during serialization. This is only supported in Pydantic v2. |
Keyword-Only Parameters
| Name | Description |
|---|---|
|
indent
|
Default value: 2
|
|
use_api_names
|
Default value: True
|
|
exclude_unset
|
Default value: True
|
|
exclude_defaults
|
Default value: False
|
|
exclude_none
|
Default value: False
|
|
warnings
|
Default value: True
|
update_forward_refs
update_forward_refs(**localns: Any) -> None
validate
validate(value: Any) -> Self
Parameters
| Name | Description |
|---|---|
|
value
Required
|
|
Attributes
created_at
Unix timestamp (in seconds) when the compacted conversation was created.
created_at: int
id
The unique identifier for the compacted response.
id: str
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_config: ClassVar[ConfigDict] = {'defer_build': True, 'extra': 'allow'}
model_extra
Get extra fields set during validation.
Returns
| Type | Description |
|---|---|
|
A dictionary of extra fields, or None if config.extra is not set to "allow". |
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
Returns
| Type | Description |
|---|---|
|
A set of strings representing the fields that have been set, i.e. that were not filled from defaults. |
object
The object type. Always response.compaction.
object: Literal['response.compaction']
output
The compacted list of output items.
This is a list of all user messages, followed by a single compaction item.
output: List[ResponseOutputMessage | ResponseFileSearchToolCall | ResponseFunctionToolCall | ResponseFunctionWebSearch | ResponseComputerToolCall | ResponseReasoningItem | ResponseCompactionItem | ImageGenerationCall | ResponseCodeInterpreterToolCall | LocalShellCall | ResponseFunctionShellToolCall | ResponseFunctionShellToolCallOutput | ResponseApplyPatchToolCall | ResponseApplyPatchToolCallOutput | McpCall | McpListTools | McpApprovalRequest | ResponseCustomToolCall]
usage
Token accounting for the compaction pass, including cached, reasoning, and total tokens.
usage: ResponseUsage
model_computed_fields
model_computed_fields = {}
model_fields
model_fields = {'created_at': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=str, required=True), 'object': FieldInfo(annotation=Literal['response.compaction'], required=True), 'output': FieldInfo(annotation=List[Annotated[Union[ResponseOutputMessage, ResponseFileSearchToolCall, ResponseFunctionToolCall, ResponseFunctionWebSearch, ResponseComputerToolCall, ResponseReasoningItem, ResponseCompactionItem, ImageGenerationCall, ResponseCodeInterpreterToolCall, LocalShellCall, ResponseFunctionShellToolCall, ResponseFunctionShellToolCallOutput, ResponseApplyPatchToolCall, ResponseApplyPatchToolCallOutput, McpCall, McpListTools, McpApprovalRequest, ResponseCustomToolCall], PropertyInfo]], required=True), 'usage': FieldInfo(annotation=ResponseUsage, required=True)}