Share via


CompactedResponse Class

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Constructor

CompactedResponse(**data: Any)

Methods

construct
copy

Returns a copy of the model.

!!! warning "Deprecated" This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data)

dict
from_orm
json
model_construct
model_copy

!!! abstract "Usage Documentation" model_copy

Returns a copy of the model.

!!! note The underlying instance's [dict][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

model_dump

!!! abstract "Usage Documentation" model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

model_dump_json

!!! abstract "Usage Documentation" model_dump_json

Generates a JSON representation of the model using Pydantic's to_json method.

model_json_schema

Generates a JSON schema for a model class.

model_parametrized_name

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

model_post_init

Override this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

model_rebuild

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

model_validate

Validate a pydantic model instance.

model_validate_json

!!! abstract "Usage Documentation" JSON Parsing

Validate the given JSON data against the Pydantic model.

model_validate_strings

Validate the given object with string data against the Pydantic model.

parse_file
parse_obj
parse_raw
schema
schema_json
to_dict

Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.

For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).

to_json

Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation).

By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.

For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).

update_forward_refs
validate

construct

construct(_fields_set: set[str] | None = None, **values: object) -> ModelT

Parameters

Name Description
_fields_set
Default value: None

copy

Returns a copy of the model.

!!! warning "Deprecated" This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data)

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) -> Self

Parameters

Name Description
include
Required

Optional set or mapping specifying which fields to include in the copied model.

exclude
Required

Optional set or mapping specifying which fields to exclude in the copied model.

update
Required

Optional dictionary of field-value pairs to override field values in the copied model.

deep
Required

If True, the values of fields that are Pydantic models will be deep-copied.

Keyword-Only Parameters

Name Description
include
Default value: None
exclude
Default value: None
update
Default value: None
deep
Default value: False

Returns

Type Description

A copy of the model with included, excluded and updated fields as specified.

dict

dict(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) -> Dict[str, Any]

Keyword-Only Parameters

Name Description
include
Default value: None
exclude
Default value: None
by_alias
Default value: False
exclude_unset
Default value: False
exclude_defaults
Default value: False
exclude_none
Default value: False

from_orm

from_orm(obj: Any) -> Self

Parameters

Name Description
obj
Required

json

json(*, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) -> str

Keyword-Only Parameters

Name Description
include
Default value: None
exclude
Default value: None
by_alias
Default value: False
exclude_unset
Default value: False
exclude_defaults
Default value: False
exclude_none
Default value: False
encoder
Default value: PydanticUndefined
models_as_dict
Default value: PydanticUndefined

model_construct

model_construct(_fields_set: set[str] | None = None, **values: object) -> ModelT

Parameters

Name Description
_fields_set
Default value: None

model_copy

!!! abstract "Usage Documentation" model_copy

Returns a copy of the model.

!!! note The underlying instance's [dict][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self

Parameters

Name Description
update
Required

Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

deep
Required

Set to True to make a deep copy of the model.

Keyword-Only Parameters

Name Description
update
Default value: None
deep
Default value: False

Returns

Type Description

New model instance.

model_dump

!!! abstract "Usage Documentation" model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, exclude_computed_fields: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) -> dict[str, Any]

Parameters

Name Description
mode
Required

The mode in which to_python should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects.

include
Required

A set of fields to include in the output.

exclude
Required

A set of fields to exclude from the output.

context
Required

Additional context to pass to the serializer.

by_alias
Required

Whether to use the field's alias in the dictionary key if defined.

exclude_unset
Required

Whether to exclude fields that have not been explicitly set.

exclude_defaults
Required

Whether to exclude fields that are set to their default value.

exclude_none
Required

Whether to exclude fields that have a value of None.

exclude_computed_fields
Required

Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.

round_trip
Required

If True, dumped values should be valid as input for non-idempotent types such as Json[T].

warnings
Required

How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback
Required

A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any
Required

Whether to serialize fields with duck-typing serialization behavior.

Keyword-Only Parameters

Name Description
mode
Default value: python
include
Default value: None
exclude
Default value: None
context
Default value: None
by_alias
Default value: None
exclude_unset
Default value: False
exclude_defaults
Default value: False
exclude_none
Default value: False
exclude_computed_fields
Default value: False
round_trip
Default value: False
warnings
Default value: True
fallback
Default value: None
serialize_as_any
Default value: False

Returns

Type Description

A dictionary representation of the model.

model_dump_json

!!! abstract "Usage Documentation" model_dump_json

Generates a JSON representation of the model using Pydantic's to_json method.

model_dump_json(*, indent: int | None = None, ensure_ascii: bool = False, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, exclude_computed_fields: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) -> str

Parameters

Name Description
indent
Required

Indentation to use in the JSON output. If None is passed, the output will be compact.

ensure_ascii
Required

If True, the output is guaranteed to have all incoming non-ASCII characters escaped. If False (the default), these characters will be output as-is.

include
Required

Field(s) to include in the JSON output.

exclude
Required

Field(s) to exclude from the JSON output.

context
Required

Additional context to pass to the serializer.

by_alias
Required

Whether to serialize using field aliases.

exclude_unset
Required

Whether to exclude fields that have not been explicitly set.

exclude_defaults
Required

Whether to exclude fields that are set to their default value.

exclude_none
Required

Whether to exclude fields that have a value of None.

exclude_computed_fields
Required

Whether to exclude computed fields. While this can be useful for round-tripping, it is usually recommended to use the dedicated round_trip parameter instead.

round_trip
Required

If True, dumped values should be valid as input for non-idempotent types such as Json[T].

warnings
Required

How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback
Required

A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any
Required

Whether to serialize fields with duck-typing serialization behavior.

Keyword-Only Parameters

Name Description
indent
Default value: None
ensure_ascii
Default value: False
include
Default value: None
exclude
Default value: None
context
Default value: None
by_alias
Default value: None
exclude_unset
Default value: False
exclude_defaults
Default value: False
exclude_none
Default value: False
exclude_computed_fields
Default value: False
round_trip
Default value: False
warnings
Default value: True
fallback
Default value: None
serialize_as_any
Default value: False

Returns

Type Description

A JSON string representation of the model.

model_json_schema

Generates a JSON schema for a model class.

model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation', *, union_format: ~typing.Literal['any_of', 'primitive_type_array'] = 'any_of') -> dict[str, Any]

Parameters

Name Description
by_alias

Whether to use attribute aliases or not.

Default value: True
ref_template

The reference template.

Default value: #/$defs/{model}
union_format
Required

The format to use when combining schemas from unions together. Can be one of:

  • 'any_of': Use the anyOf

keyword to combine schemas (the default).

  • 'primitive_type_array': Use the type keyword as an array of strings, containing each type of the combination. If any of the schemas is not a primitive type (string, boolean, null, integer or number) or contains constraints/metadata, falls back to any_of.
schema_generator

To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

Default value: <class 'pydantic.json_schema.GenerateJsonSchema'>
mode

The mode in which to generate the schema.

Default value: validation

Keyword-Only Parameters

Name Description
union_format
Default value: any_of

Returns

Type Description

The JSON schema for the given model class.

model_parametrized_name

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

model_parametrized_name(params: tuple[type[Any], ...]) -> str

Parameters

Name Description
params
Required

Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns

Type Description

String representing the new class where params are passed to cls as type variables.

Exceptions

Type Description

Raised when trying to generate concrete names for non-generic models.

model_post_init

Override this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

model_post_init(context: Any, /) -> None

Positional-Only Parameters

Name Description
context
Required

model_rebuild

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) -> bool | None

Parameters

Name Description
force
Required

Whether to force the rebuilding of the model schema, defaults to False.

raise_errors
Required

Whether to raise errors, defaults to True.

_parent_namespace_depth
Required

The depth level of the parent namespace, defaults to 2.

_types_namespace
Required

The types namespace, defaults to None.

Keyword-Only Parameters

Name Description
force
Default value: False
raise_errors
Default value: True
_parent_namespace_depth
Default value: 2
_types_namespace
Default value: None

Returns

Type Description

Returns None if the schema is already "complete" and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

model_validate

Validate a pydantic model instance.

model_validate(obj: Any, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self

Parameters

Name Description
obj
Required

The object to validate.

strict
Required

Whether to enforce types strictly.

extra
Required

Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.

from_attributes
Required

Whether to extract data from object attributes.

context
Required

Additional context to pass to the validator.

by_alias
Required

Whether to use the field's alias when validating against the provided input data.

by_name
Required

Whether to use the field's name when validating against the provided input data.

Keyword-Only Parameters

Name Description
strict
Default value: None
extra
Default value: None
from_attributes
Default value: None
context
Default value: None
by_alias
Default value: None
by_name
Default value: None

Returns

Type Description

The validated model instance.

Exceptions

Type Description
ValidationError

If the object could not be validated.

model_validate_json

!!! abstract "Usage Documentation" JSON Parsing

Validate the given JSON data against the Pydantic model.

model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self

Parameters

Name Description
json_data
Required

The JSON data to validate.

strict
Required

Whether to enforce types strictly.

extra
Required

Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.

context
Required

Extra variables to pass to the validator.

by_alias
Required

Whether to use the field's alias when validating against the provided input data.

by_name
Required

Whether to use the field's name when validating against the provided input data.

Keyword-Only Parameters

Name Description
strict
Default value: None
extra
Default value: None
context
Default value: None
by_alias
Default value: None
by_name
Default value: None

Returns

Type Description

The validated Pydantic model.

Exceptions

Type Description
ValidationError

If json_data is not a JSON string or the object could not be validated.

model_validate_strings

Validate the given object with string data against the Pydantic model.

model_validate_strings(obj: Any, *, strict: bool | None = None, extra: Literal['allow', 'ignore', 'forbid'] | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) -> Self

Parameters

Name Description
obj
Required

The object containing string data to validate.

strict
Required

Whether to enforce types strictly.

extra
Required

Whether to ignore, allow, or forbid extra data during model validation. See the [extra configuration value][pydantic.ConfigDict.extra] for details.

context
Required

Extra variables to pass to the validator.

by_alias
Required

Whether to use the field's alias when validating against the provided input data.

by_name
Required

Whether to use the field's name when validating against the provided input data.

Keyword-Only Parameters

Name Description
strict
Default value: None
extra
Default value: None
context
Default value: None
by_alias
Default value: None
by_name
Default value: None

Returns

Type Description

The validated Pydantic model.

parse_file

parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) -> Self

Parameters

Name Description
path
Required

Keyword-Only Parameters

Name Description
content_type
Default value: None
encoding
Default value: utf8
proto
Default value: None
allow_pickle
Default value: False

parse_obj

parse_obj(obj: Any) -> Self

Parameters

Name Description
obj
Required

parse_raw

parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) -> Self

Parameters

Name Description
b
Required

Keyword-Only Parameters

Name Description
content_type
Default value: None
encoding
Default value: utf8
proto
Default value: None
allow_pickle
Default value: False

schema

schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') -> Dict[str, Any]

Parameters

Name Description
by_alias
Default value: True
ref_template
Default value: #/$defs/{model}

schema_json

schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) -> str

Keyword-Only Parameters

Name Description
by_alias
Default value: True
ref_template
Default value: #/$defs/{model}

to_dict

Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.

For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).

to_dict(*, mode: Literal['json', 'python'] = 'python', use_api_names: bool = True, exclude_unset: bool = True, exclude_defaults: bool = False, exclude_none: bool = False, warnings: bool = True) -> dict[str, object]

Parameters

Name Description
mode
Required

If mode is 'json', the dictionary will only contain JSON serializable types. e.g. datetime will be turned into a string, "2024-3-22T18:11:19.117000Z". If mode is 'python', the dictionary may contain any Python objects. e.g. datetime(2024, 3, 22)

use_api_names
Required

Whether to use the key that the API responded with or the property name. Defaults to True.

exclude_unset
Required

Whether to exclude fields that have not been explicitly set.

exclude_defaults
Required

Whether to exclude fields that are set to their default value from the output.

exclude_none
Required

Whether to exclude fields that have a value of None from the output.

warnings
Required

Whether to log warnings when invalid fields are encountered. This is only supported in Pydantic v2.

Keyword-Only Parameters

Name Description
mode
Default value: python
use_api_names
Default value: True
exclude_unset
Default value: True
exclude_defaults
Default value: False
exclude_none
Default value: False
warnings
Default value: True

to_json

Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation).

By default, fields that were not set by the API will not be included, and keys will match the API response, not the property names from the model.

For example, if the API responds with "fooBar": true but we've defined a foo_bar: bool property, the output will use the "fooBar" key (unless use_api_names=False is passed).

to_json(*, indent: int | None = 2, use_api_names: bool = True, exclude_unset: bool = True, exclude_defaults: bool = False, exclude_none: bool = False, warnings: bool = True) -> str

Parameters

Name Description
indent
Required

Indentation to use in the JSON output. If None is passed, the output will be compact. Defaults to 2

use_api_names
Required

Whether to use the key that the API responded with or the property name. Defaults to True.

exclude_unset
Required

Whether to exclude fields that have not been explicitly set.

exclude_defaults
Required

Whether to exclude fields that have the default value.

exclude_none
Required

Whether to exclude fields that have a value of None.

warnings
Required

Whether to show any warnings that occurred during serialization. This is only supported in Pydantic v2.

Keyword-Only Parameters

Name Description
indent
Default value: 2
use_api_names
Default value: True
exclude_unset
Default value: True
exclude_defaults
Default value: False
exclude_none
Default value: False
warnings
Default value: True

update_forward_refs

update_forward_refs(**localns: Any) -> None

validate

validate(value: Any) -> Self

Parameters

Name Description
value
Required

Attributes

created_at

Unix timestamp (in seconds) when the compacted conversation was created.

created_at: int

id

The unique identifier for the compacted response.

id: str

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_config: ClassVar[ConfigDict] = {'defer_build': True, 'extra': 'allow'}

model_extra

Get extra fields set during validation.

Returns

Type Description

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

Returns

Type Description

A set of strings representing the fields that have been set, i.e. that were not filled from defaults.

object

The object type. Always response.compaction.

object: Literal['response.compaction']

output

The compacted list of output items.

This is a list of all user messages, followed by a single compaction item.

output: List[ResponseOutputMessage | ResponseFileSearchToolCall | ResponseFunctionToolCall | ResponseFunctionWebSearch | ResponseComputerToolCall | ResponseReasoningItem | ResponseCompactionItem | ImageGenerationCall | ResponseCodeInterpreterToolCall | LocalShellCall | ResponseFunctionShellToolCall | ResponseFunctionShellToolCallOutput | ResponseApplyPatchToolCall | ResponseApplyPatchToolCallOutput | McpCall | McpListTools | McpApprovalRequest | ResponseCustomToolCall]

usage

Token accounting for the compaction pass, including cached, reasoning, and total tokens.

usage: ResponseUsage

model_computed_fields

model_computed_fields = {}

model_fields

model_fields = {'created_at': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=str, required=True), 'object': FieldInfo(annotation=Literal['response.compaction'], required=True), 'output': FieldInfo(annotation=List[Annotated[Union[ResponseOutputMessage, ResponseFileSearchToolCall, ResponseFunctionToolCall, ResponseFunctionWebSearch, ResponseComputerToolCall, ResponseReasoningItem, ResponseCompactionItem, ImageGenerationCall, ResponseCodeInterpreterToolCall, LocalShellCall, ResponseFunctionShellToolCall, ResponseFunctionShellToolCallOutput, ResponseApplyPatchToolCall, ResponseApplyPatchToolCallOutput, McpCall, McpListTools, McpApprovalRequest, ResponseCustomToolCall], PropertyInfo]], required=True), 'usage': FieldInfo(annotation=ResponseUsage, required=True)}