TableVertical Class
Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting.
Constructor
TableVertical(*, cv_split_column_names: List[str] | None = None, featurization_settings: _models.TableVerticalFeaturizationSettings | None = None, limit_settings: _models.TableVerticalLimitSettings | None = None, n_cross_validations: _models.NCrossValidations | None = None, test_data: _models.MLTableJobInput | None = None, test_data_size: float | None = None, validation_data: _models.MLTableJobInput | None = None, validation_data_size: float | None = None, weight_column_name: str | None = None, **kwargs: Any)
Keyword-Only Parameters
Name | Description |
---|---|
cv_split_column_names
|
Columns to use for CVSplit data. Default value: None
|
featurization_settings
|
Featurization inputs needed for AutoML job. Default value: None
|
limit_settings
|
Execution constraints for AutoMLJob. Default value: None
|
n_cross_validations
|
Number of cross validation folds to be applied on training dataset when validation dataset is not provided. Default value: None
|
test_data
|
Test data input. Default value: None
|
test_data_size
|
The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. Default value: None
|
validation_data
|
Validation data inputs. Default value: None
|
validation_data_size
|
The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. Default value: None
|
weight_column_name
|
The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. Default value: None
|
Variables
Name | Description |
---|---|
cv_split_column_names
|
Columns to use for CVSplit data. |
featurization_settings
|
Featurization inputs needed for AutoML job. |
limit_settings
|
Execution constraints for AutoMLJob. |
n_cross_validations
|
Number of cross validation folds to be applied on training dataset when validation dataset is not provided. |
test_data
|
Test data input. |
test_data_size
|
The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
validation_data
|
Validation data inputs. |
validation_data_size
|
The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided. |
weight_column_name
|
The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. |