Share via


TableVertical Class

Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting.

Constructor

TableVertical(*, cv_split_column_names: List[str] | None = None, featurization_settings: _models.TableVerticalFeaturizationSettings | None = None, limit_settings: _models.TableVerticalLimitSettings | None = None, n_cross_validations: _models.NCrossValidations | None = None, test_data: _models.MLTableJobInput | None = None, test_data_size: float | None = None, validation_data: _models.MLTableJobInput | None = None, validation_data_size: float | None = None, weight_column_name: str | None = None, **kwargs: Any)

Keyword-Only Parameters

Name Description
cv_split_column_names

Columns to use for CVSplit data.

Default value: None
featurization_settings

Featurization inputs needed for AutoML job.

Default value: None
limit_settings

Execution constraints for AutoMLJob.

Default value: None
n_cross_validations

Number of cross validation folds to be applied on training dataset when validation dataset is not provided.

Default value: None
test_data

Test data input.

Default value: None
test_data_size

The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.

Default value: None
validation_data

Validation data inputs.

Default value: None
validation_data_size

The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.

Default value: None
weight_column_name
str

The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.

Default value: None

Variables

Name Description
cv_split_column_names

Columns to use for CVSplit data.

featurization_settings

Featurization inputs needed for AutoML job.

limit_settings

Execution constraints for AutoMLJob.

n_cross_validations

Number of cross validation folds to be applied on training dataset when validation dataset is not provided.

test_data

Test data input.

test_data_size

The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.

validation_data

Validation data inputs.

validation_data_size

The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.

weight_column_name
str

The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.