utilities Module
Utility methods for validation and conversion.
Classes
suppress_stdout_stderr |
A context manager for doing a "deep suppression" of stdout and stderr. Will suppress all print, even if the print originates in a compiled C/Fortran sub-function. Will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited. Create the context manager. |
Functions
convert_dict_values_to_str
Convert a dictionary's values so that every value is a string.
convert_dict_values_to_str(input_dict: Dict[Any, Any]) -> Dict[str, str]
Parameters
Name | Description |
---|---|
input_dict
Required
|
the dictionary that should be converted |
Returns
Type | Description |
---|---|
a dictionary with all values converted to strings |
get_default_metric_with_objective
Get the dictionary of metric -> objective for the given task.
get_default_metric_with_objective(task)
Parameters
Name | Description |
---|---|
task
Required
|
string "classification" or "regression" |
Returns
Type | Description |
---|---|
dictionary of metric -> objective |
get_error_code
Build the error code from an exception.
get_error_code(exception: BaseException, as_hierarchy: bool = False) -> str
Parameters
Name | Description |
---|---|
exception
Required
|
The exception that fails the run. |
as_hierarchy
|
If the complete error hierarchy should be returned Default value: False
|
Returns
Type | Description |
---|---|
Return the str containing error_code. If as_hierarchy is True, the hierarchy returned is joined by a '.' |
get_min_points
Return the minimum number of data points needed for training.
get_min_points(window_size: int, lags: List[int], max_horizon: int, cv: int | None, n_step: int | None = None) -> int
Parameters
Name | Description |
---|---|
window_size
Required
|
the rolling window size. |
lags
Required
|
The lag size. |
max_horizon
Required
|
the desired length of forecasting. |
cv
Required
|
the number of cross validations. |
n_step
|
Number of periods between the origin_time of one CV fold and the next fold. For example, if n_step = 3 for daily data, the origin time for each fold will be three days apart. Default value: None
|
Returns
Type | Description |
---|---|
the minimum number of data points. |
get_primary_metrics
Get the primary metrics supported for a given task as a list.
get_primary_metrics(task: str) -> List[str]
Parameters
Name | Description |
---|---|
task
Required
|
Task type supported by AutoML, as defined in azureml.automl.core.shared.constants.Tasks |
Returns
Type | Description |
---|---|
A list of the primary metrics supported for the task. |
get_value_float
Convert string value to float. :param floatstring: The input value to be converted. :type floatstring: str :return: The converted value. :rtype: float
get_value_float(floatstring: str) -> float | str | None
Parameters
Name | Description |
---|---|
floatstring
Required
|
|
get_value_from_dict
Get the value of a configuration item that has a list of names.
get_value_from_dict(dictionary: Dict[str, Any], names: List[str], default_value: Any) -> Any
Parameters
Name | Description |
---|---|
dictionary
Required
|
Dictionary of settings with key value pair to look the data for. |
names
Required
|
The list of names for the item looking foi. |
default_value
Required
|
Default value to return if no matching key found |
Returns
Type | Description |
---|---|
Returns the first value from the list of names. |
get_value_int
Convert string value to int.
get_value_int(intstring: str) -> int | str | None
Parameters
Name | Description |
---|---|
intstring
Required
|
The input value to be converted. |
Returns
Type | Description |
---|---|
The converted value. |
interpret_exception
Translate an exception to an AzureMLException.
If the exception is already one of the known types (e.g. ServiceException, AzureMLException), return the exception as-is.
Dev note: If we see adding more exceptions, or new interpretations for remote vs. local runs, consider converting this functionality into its own class
interpret_exception(exception: BaseException, is_aml_compute: bool = True, **kwargs: Any) -> AzureMLException | ServiceException
Parameters
Name | Description |
---|---|
exception
Required
|
The exception object that needs to be interpreted |
is_aml_compute
|
If the context is an execution service managed run on an AML Compute (e.g. OSErrors, networking errors may need to be interpreted differently based on the run type) Default value: True
|
kwargs
Required
|
Any run-time properties that the ErrorDefinition expects (such as reference_code) |
Returns
Type | Description |
---|---|
exception interpreted as an AzureMLException with error code |
is_known_date_time_format
Check if a given string matches the known date time regular expressions.
is_known_date_time_format(datetime_str: str) -> bool
Parameters
Name | Description |
---|---|
datetime_str
Required
|
Input string to check if it's a date or not |
Returns
Type | Description |
---|---|
Whether the given string is in a known date time format or not |
minimize_or_maximize
Select the objective given a metric.
Some metrics should be minimized and some should be maximized :param metric: the name of the metric to look up :param task: one of constants.Tasks. :return: returns one of constants.OptimizerObjectives.
minimize_or_maximize(metric, task=None)
Parameters
Name | Description |
---|---|
metric
Required
|
|
task
|
Default value: None
|
subsampling_recommended
subsampling_recommended(num_samples)
Parameters
Name | Description |
---|---|
num_samples
Required
|
number of samples. |
Returns
Type | Description |
---|---|
True if subsampling is recommended, else False. |
to_ordinal_string
Convert an integer to an ordinal string.
to_ordinal_string(integer: int) -> str
Parameters
Name | Description |
---|---|
integer
Required
|
|