Share via


SGDClassifierWrapper Class

SGD Classifier Wrapper Class.

Wrapper around SGD Classifier to support predict probabilities on loss functions other than log loss and modified huber loss. This breaks partial_fit on loss functions other than log and modified_huber since the calibrated model does not support partial_fit.

Read more at: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html.

Initialize SGD Classifier Wrapper Model.

Constructor

SGDClassifierWrapper(random_state=None, n_jobs=1, **kwargs)

Parameters

Name Description
random_state
int or <xref:np.random.RandomState>

RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Default value: None
n_jobs
int

Number of parallel threads.

Default value: 1
kwargs
Required

Other parameters.

Methods

fit

Fit function for SGD Classifier Wrapper Model.

get_model

Return SGD Classifier Wrapper Model.

Else returns None

get_params

Return parameters for SGD Classifier Wrapper Model.

partial_fit

Return partial fit result.

predict

Prediction function for SGD Classifier Wrapper Model.

predict_proba

Prediction class probabilities for X for SGD Classifier Wrapper model.

set_score_request

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see <xref:sklearn.set_config>). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a

sub-estimator of a meta-estimator, e.g. used inside a

<xref:sklearn.pipeline.Pipeline>. Otherwise it has no effect.

fit

Fit function for SGD Classifier Wrapper Model.

fit(X, y, **kwargs)

Parameters

Name Description
X
Required

Input data.

y
Required

Input target values.

kwargs
Required

Other parameters.

Returns

Type Description

Returns an instance of inner SGDClassifier model.

get_model

Return SGD Classifier Wrapper Model.

Else returns None

get_model()

Returns

Type Description

Returns the fitted model if fit method has been called.

get_params

Return parameters for SGD Classifier Wrapper Model.

get_params(deep=True)

Parameters

Name Description
deep

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Default value: True

Returns

Type Description

parameters for SGD Classifier Wrapper Model.

partial_fit

Return partial fit result.

partial_fit(X, y, **kwargs)

Parameters

Name Description
X
Required

Input data.

y
Required

Input target values.

kwargs
Required

Other parameters.

Returns

Type Description

Returns an instance of inner SGDClassifier model.

predict

Prediction function for SGD Classifier Wrapper Model.

predict(X)

Parameters

Name Description
X
Required

Input data.

Returns

Type Description

Prediction values from SGD Classifier Wrapper model.

predict_proba

Prediction class probabilities for X for SGD Classifier Wrapper model.

predict_proba(X)

Parameters

Name Description
X
Required

Input data.

Returns

Type Description

Prediction probability values from SGD Classifier Wrapper model.

set_score_request

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see <xref:sklearn.set_config>). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a

sub-estimator of a meta-estimator, e.g. used inside a

<xref:sklearn.pipeline.Pipeline>. Otherwise it has no effect.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') -> SGDClassifierWrapper

Parameters

Name Description
sample_weight
Required
str, True, False or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Keyword-Only Parameters

Name Description
sample_weight
Default value: $UNCHANGED$

Returns

Type Description

self – The updated object.