PyTorch Class

Represents an estimator for training in PyTorch experiments.

DEPRECATED. Use the ScriptRunConfig object with your own defined environment or one of the Azure ML PyTorch curated environments. For an introduction to configuring PyTorch experiment runs with ScriptRunConfig, see Train PyTorch models at scale with Azure Machine Learning.

Supported versions: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

Inheritance
azureml.train.estimator._framework_base_estimator._FrameworkBaseEstimator
PyTorch

Constructor

PyTorch(source_directory, *, compute_target=None, vm_size=None, vm_priority=None, entry_script=None, script_params=None, node_count=1, process_count_per_node=1, distributed_backend=None, distributed_training=None, use_gpu=False, use_docker=True, custom_docker_base_image=None, custom_docker_image=None, image_registry_details=None, user_managed=False, conda_packages=None, pip_packages=None, conda_dependencies_file_path=None, pip_requirements_file_path=None, conda_dependencies_file=None, pip_requirements_file=None, environment_variables=None, environment_definition=None, inputs=None, source_directory_data_store=None, shm_size=None, resume_from=None, max_run_duration_seconds=None, framework_version=None, _enable_optimized_mode=False, _disable_validation=True, _show_lint_warnings=False, _show_package_warnings=False)

Parameters

source_directory
str
Required

A local directory containing experiment configuration files.

compute_target
AbstractComputeTarget or str
Required

The compute target where training will happen. This can either be an object or the string "local".

vm_size
str
Required

The VM size of the compute target that will be created for the training. Supported values: Any Azure VM size.

vm_priority
str
Required

The VM priority of the compute target that will be created for the training. If not specified, 'dedicated' is used.

Supported values: 'dedicated' and 'lowpriority'.

This takes effect only when the vm_size param is specified in the input.

entry_script
str
Required

The relative path to the file containing the training script.

script_params
dict
Required

A dictionary of command-line arguments to pass to the training script specified in entry_script.

node_count
int
Required

The number of nodes in the compute target used for training. If greater than 1, an MPI distributed job will be run. Only the AmlCompute target is supported for distributed jobs.

process_count_per_node
int
Required

The number of processes per node. If greater than 1, an MPI distributed job will be run. Only the AmlCompute target is supported for distributed jobs.

distributed_backend
str
Required

The communication backend for distributed training.

DEPRECATED. Use the distributed_training parameter.

Supported values: 'mpi', 'gloo' and 'nccl'.

'mpi': MPI/Horovod 'gloo', 'nccl': Native PyTorch Distributed Training

This parameter is required when node_count or process_count_per_node > 1.

When node_count == 1 and process_count_per_node == 1, no backend will be used unless the backend is explicitly set. Only the AmlCompute target is supported for distributed training.

distributed_training
Mpi or Gloo or Nccl
Required

Parameters for running a distributed training job.

For running a distributed job with MPI backend, use Mpi object to specify process_count_per_node. For running a distributed job with gloo backend, use Gloo. For running a distributed job with nccl backend, use Nccl.

use_gpu
bool
Required

Specifies whether the environment to run the experiment should support GPUs. If true, a GPU-based default Docker image will be used in the environment. If false, a CPU-based image will be used. Default docker images (CPU or GPU) will be used only if the custom_docker_image parameter is not set. This setting is used only in Docker-enabled compute targets.

use_docker
bool
Required

Specifies whether the environment to run the experiment should be Docker-based.

custom_docker_base_image
str
Required

The name of the Docker image from which the image to use for training will be built.

DEPRECATED. Use the custom_docker_image parameter.

If not set, a default CPU-based image will be used as the base image.

custom_docker_image
str
Required

The name of the Docker image from which the image to use for training will be built. If not set, a default CPU-based image will be used as the base image.

image_registry_details
ContainerRegistry
Required

The details of the Docker image registry.

user_managed
bool
Required

Specifies whether Azure ML reuses an existing python environment. If false, Azure ML will create a Python environment based on the conda dependencies specification.

conda_packages
list
Required

A list of strings representing conda packages to be added to the Python environment for the experiment.

pip_packages
list
Required

A list of strings representing pip packages to be added to the Python environment for the experiment.

conda_dependencies_file_path
str
Required

The relative path to the conda dependencies yaml file. If specified, Azure ML will not install any framework related packages. DEPRECATED. Use the conda_dependencies_file parameter.

pip_requirements_file_path
str
Required

The relative path to the pip requirements text file. This can be provided in combination with the pip_packages parameter. DEPRECATED. Use the pip_requirements_file parameter.

conda_dependencies_file
str
Required

The relative path to the conda dependencies yaml file. If specified, Azure ML will not install any framework related packages.

pip_requirements_file
str
Required

The relative path to the pip requirements text file. This can be provided in combination with the pip_packages parameter.

environment_variables
dict
Required

A dictionary of environment variables names and values. These environment variables are set on the process where user script is being executed.

environment_definition
Environment
Required

The environment definition for the experiment. It includes PythonSection, DockerSection, and environment variables. Any environment option not directly exposed through other parameters to the Estimator construction can be set using this parameter. If this parameter is specified, it will take precedence over other environment-related parameters like use_gpu, custom_docker_image, conda_packages, or pip_packages. Errors will be reported on invalid combinations of parameters.

inputs
list
Required

A list of DataReference or DatasetConsumptionConfig objects to use as input.

source_directory_data_store
Datastore
Required

The backing datastore for project share.

shm_size
str
Required

The size of the Docker container's shared memory block. If not set, the default azureml.core.environment._DEFAULT_SHM_SIZE is used. For more information, see Docker run reference.

resume_from
DataPath
Required

The data path containing the checkpoint or model files from which to resume the experiment.

max_run_duration_seconds
int
Required

The maximum allowed time for the run. Azure ML will attempt to automatically cancel the run if it takes longer than this value.

framework_version
str
Required

The PyTorch version to be used for executing training code. PyTorch.get_supported_versions() returns a list of the versions supported by the current SDK.

Remarks

When submitting a training job, Azure ML runs your script in a conda environment within a Docker container. The PyTorch containers have the following dependencies installed.

Dependencies | PyTorch 1.0/1.1/1.2/1.3/ | PyTorch 1.4/1.5/1.6 | ———————- | —————– | ————- | Python | 3.6.2 | 3.6.2 | CUDA (GPU image only) | 10.0 | 10.1 | cuDNN (GPU image only) | 7.6.3 | 7.6.3 | NCCL (GPU image only) | 2.4.8 | 2.4.8 | azureml-defaults | Latest | Latest | OpenMpi | 3.1.2 | 3.1.2 | horovod | 0.18.1 | 0.18.1/0.19.1/0.19.5 | miniconda | 4.5.11 | 4.5.11 | torch | 1.0/1.1/1.2/1.3.1 | 1.4.0/1.5.0/1.6.0 | torchvision | 0.4.1 | 0.5.0 | git | 2.7.4 | 2.7.4 | tensorboard | 1.14 | 1.14 | future | 0.17.1 | 0.17.1 |

The Docker images extend Ubuntu 16.04.

To install additional dependencies, you can either use the pip_packages or conda_packages parameter. Or, you can specify the pip_requirements_file or conda_dependencies_file parameter. Alternatively, you can build your own image, and pass the custom_docker_image parameter to the estimator constructor.

For more information about Docker containers used in PyTorch training, see https://github.com/Azure/AzureML-Containers.

The PyTorch estimator supports distributed training across CPU and GPU clusters using Horovod, an open-source, all reduce framework for distributed training. For examples and more information about using PyTorch in distributed training, see the tutorial Train and register PyTorch models at scale with Azure Machine Learning.

Attributes

DEFAULT_VERSION

DEFAULT_VERSION = '1.4'

FRAMEWORK_NAME

FRAMEWORK_NAME = 'PyTorch'