LightGbmRegressor Class
Gradient Boosted Decision Trees
- Inheritance
-
nimbusml.internal.core.ensemble._lightgbmregressor.LightGbmRegressorLightGbmRegressornimbusml.base_predictor.BasePredictorLightGbmRegressorsklearn.base.RegressorMixinLightGbmRegressor
Constructor
LightGbmRegressor(number_of_iterations=100, learning_rate=None, number_of_leaves=None, minimum_example_count_per_leaf=None, booster=None, normalize='Auto', caching='Auto', evaluation_metric='RootMeanSquaredError', maximum_bin_count_per_feature=255, verbose=False, silent=True, number_of_threads=None, early_stopping_round=0, batch_size=1048576, use_categorical_split=None, handle_missing_value=True, minimum_example_count_per_group=100, maximum_categorical_split_point_count=32, categorical_smoothing=10.0, l2_categorical_regularization=10.0, random_state=None, parallel_trainer=None, feature=None, group_id=None, label=None, weight=None, **params)
Parameters
Name | Description |
---|---|
feature
|
see Columns. |
group_id
|
see Columns. |
label
|
see Columns. |
weight
|
see Columns. |
number_of_iterations
|
Number of iterations. |
learning_rate
|
Determines the size of the step taken in the direction of the gradient in each step of the learning process. This determines how fast or slow the learner converges on the optimal solution. If the step size is too big, you might overshoot the optimal solution. If the step size is too small, training takes longer to converge to the best solution. |
number_of_leaves
|
The maximum number of leaves (terminal nodes) that can be created in any tree. Higher values potentially increase the size of the tree and get better precision, but risk overfitting and requiring longer training times. |
minimum_example_count_per_leaf
|
Minimum number of training instances required to form a leaf. That is, the minimal number of documents allowed in a leaf of regression tree, out of the sub-sampled data. A 'split' means that features in each level of the tree (node) are randomly divided. |
booster
|
|
normalize
|
If |
caching
|
Whether trainer should cache input training data. |
evaluation_metric
|
Evaluation metrics. |
maximum_bin_count_per_feature
|
Maximum number of bucket bin for features. |
verbose
|
Verbose. |
silent
|
Printing running messages. |
number_of_threads
|
Number of parallel threads used to run LightGBM. |
early_stopping_round
|
Rounds of early stopping, 0 will disable it. |
batch_size
|
Number of entries in a batch when loading data. |
use_categorical_split
|
Enable categorical split or not. |
handle_missing_value
|
Enable special handling of missing value or not. |
minimum_example_count_per_group
|
Minimum number of instances per categorical group. |
maximum_categorical_split_point_count
|
Max number of categorical thresholds. |
categorical_smoothing
|
Lapalace smooth term in categorical feature spilt. Avoid the bias of small categories. |
l2_categorical_regularization
|
L2 Regularization for categorical split. |
random_state
|
Sets the random seed for LightGBM to use. |
parallel_trainer
|
Parallel LightGBM Learning Algorithm. |
params
|
Additional arguments sent to compute engine. |
Examples
###############################################################################
# LightGbmRegressor
from nimbusml import Pipeline, FileDataStream
from nimbusml.datasets import get_dataset
from nimbusml.ensemble import LightGbmRegressor
from nimbusml.ensemble.booster import Gbdt
from nimbusml.feature_extraction.categorical import OneHotVectorizer
# data input (as a FileDataStream)
path = get_dataset('infert').as_filepath()
data = FileDataStream.read_csv(path)
print(data.head())
# age case education induced parity ... row_num spontaneous ...
# 0 26 1 0-5yrs 1 6 ... 1 2 ...
# 1 42 1 0-5yrs 1 1 ... 2 0 ...
# 2 39 1 0-5yrs 2 6 ... 3 0 ...
# 3 34 1 0-5yrs 2 4 ... 4 0 ...
# 4 35 1 6-11yrs 1 3 ... 5 1 ...
# define the training pipeline
pipeline = Pipeline([
OneHotVectorizer(columns={'edu': 'education'}),
LightGbmRegressor(feature=['induced', 'edu'], label='age',
booster=Gbdt(reg_lambda=0.1))
])
# train, predict, and evaluate
metrics, predictions = pipeline.fit(data).test(data, output_scores=True)
# print predictions
print(predictions.head())
# Score
# 0 34.008430
# 1 34.008430
# 2 33.160175
# 3 33.160175
# 4 32.472412
# print evaluation metrics
print(metrics)
# L1(avg) L2(avg) RMS(avg) Loss-fn(avg) R Squared
# 0 4.10419 24.153105 4.914581 24.153105 0.120673
Remarks
Light GBM is an open source implementation of boosted trees. It is available in nimbusml as a binary classification trainer, a multi-class trainer, a regression trainer and a ranking trainer.
Reference
Methods
get_params |
Get the parameters for this operator. |
get_params
Get the parameters for this operator.
get_params(deep=False)
Parameters
Name | Description |
---|---|
deep
|
Default value: False
|