Episode
Interactive ad-hoc analysis at petabyte scale with HDInsight Interactive Query
with Ashish Thapliyal
In this session, you will learn how technologies such as Low Latency Analytical Processing [LLAP] and Hive 2.x are making it possible to analyze petabytes of data with sub second latency with common file formats such as csv, json etc. without converting to columnar file formats like ORC/Parquet. We will go deep into LLAP’s performance and architecture benefits and how it compares with Spark and Presto. We also look at how business analysts can use familiar tools such as Microsoft Excel and Power BI and do interactive query over their data lake without moving data outside the data lake.
In this session, you will learn how technologies such as Low Latency Analytical Processing [LLAP] and Hive 2.x are making it possible to analyze petabytes of data with sub second latency with common file formats such as csv, json etc. without converting to columnar file formats like ORC/Parquet. We will go deep into LLAP’s performance and architecture benefits and how it compares with Spark and Presto. We also look at how business analysts can use familiar tools such as Microsoft Excel and Power BI and do interactive query over their data lake without moving data outside the data lake.
Have feedback? Submit an issue here.