Use Handlebars prompt templates
Semantic Kernel supports using the Handlebars template syntax for prompts. Handlebars are a straightforward templating language primarily used for generating HTML, but it can also create other text formats. Handlebars templates consist of regular text interspersed with Handlebars expressions.
To use Handlebars template with Semantic Kernel, start by installing the package:
dotnet add package Microsoft.SemanticKernel.PromptTemplates.Handlebars --version 1.30.0
pip install --upgrade semantic-kernel
Next, import the package into your code:
using Microsoft.SemanticKernel.PromptTemplates.Handlebars;
All of the top level statements added include the following:
using Microsoft.SemanticKernel; // Core Semantic Kernel SDK
using Microsoft.SemanticKernel.Connectors.AI.OpenAI; // Azure OpenAI connector
using Microsoft.SemanticKernel.PromptTemplates; // For prompt template configuration
using Microsoft.SemanticKernel.PromptTemplates.Handlebars; // For Handlebars template support
using System; // For Console and basic types
using System.Collections.Generic; // For Dictionary and KernelArguments
using System.IO; // For file operations (e.g., loading YAML)
using System.Threading.Tasks; // For async/await support
from semantic_kernel.prompt_template.handlebars_prompt_template import HandlebarsPromptTemplate
All of the top level statements added include the following:
from semantic_kernel.prompt_template import PromptTemplateConfig # for prompt_config
from semantic_kernel.prompt_template.handlebars_prompt_template import HandlebarsPromptTemplate # for function
import json # for loading appsettings.json
import yaml # for loading HandlebarsPrompt.yaml
import asyncio # for running async main
from semantic_kernel import Kernel # Needed (for kernel)
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion # for chat_service
The following example demonstrates a chat prompt template that utilizes Handlebars syntax. The template contains Handlebars expressions, denoted by {{
and }}
. When the template is executed, these expressions are replaced with values from an input object.
const string HandlebarsTemplate = """
<message role="system">You are an AI assistant designed to help with image recognition tasks.</message>
<message role="user">
<text>{{request}}</text>
<image>{{imageData}}</image>
</message>
""";
handlebars_template = """
<message role="system">You are an AI assistant designed to help with image recognition tasks.</message>
<message role="user">
<text>{{request}}</text>
<image>{{imageData}}</image>
</message>
"""
In this example, there are two input objects:
request
- Contains the request the assistant should complete.imageData
- Contains the base64 image data.
To use the prompt template, you need to create a PromptTemplateConfig
object that contains the template and its format. Afterwards, you create a KernelFunction
object from the template configuration and specify the Handlebars template factory. Here's an example:
// Create the prompt template configuration
var templateFactory = new HandlebarsPromptTemplateFactory();
var promptTemplateConfig = new PromptTemplateConfig()
{
Template = HandlebarsTemplate,
TemplateFormat = "handlebars",
Name = "Vision_Chat_Prompt",
};
// Create a function from the Handlebars template configuration
var function = kernel.CreateFunctionFromPrompt(promptTemplateConfig, templateFactory);
# Load Azure OpenAI config from a JSON file
with open('appsettings.json', 'r') as f:
config = json.load(f)
model_id = config["modelId"]
endpoint = config["endpoint"]
api_key = config["apiKey"]
# Set up Semantic Kernel and Azure OpenAI service
kernel = Kernel()
chat_service = AzureChatCompletion(
deployment_name=model_id,
endpoint=endpoint,
api_key=api_key
)
kernel.add_service(chat_service, "chat_completion")
# Create the prompt template config and function
prompt_config = PromptTemplateConfig(
template=handlebars_template,
template_format="handlebars",
name="Vision_Chat_Prompt"
)
function = HandlebarsPromptTemplate(prompt_template_config=prompt_config)
Now you can create the KernelArguments
object with the input data and call your function.
var arguments = new KernelArguments(new Dictionary<string, object?>
{
{"request","Describe this image:"},
{"imageData", ""}
});
var response = await kernel.InvokeAsync(function, arguments);
arguments = {
"request": "Describe this image:",
"imageData": ""
}
async def main():
result = await kernel.invoke_prompt(
prompt=prompt_config.template,
request=arguments["request"],
imageData=arguments["imageData"],
service_id="chat_completion",
template_format="handlebars"
)
print("Kernel result:", result)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
The response to this prompt would be similar to the following output:
The image is a solid block of bright red color. There are no additional features, shapes, or textures present.
Use Handlebars templates in YAML prompts
You can create prompt functions from YAML files, allowing you to store your prompt templates alongside associated metadata and prompt execution settings. These files can be managed in version control, which is beneficial for tracking changes to complex prompts.
The following code is an example of the YAML representation of the chat prompt used in the earlier section:
name: Vision_Chat_Prompt
template: |
<message role="system">
You are an AI assistant designed to help with image recognition tasks.
</message>
<message role="user">
<text>{{request}}</text>
<image>{{imageData}}</image>
</message>
template_format: handlebars
description: Vision chat prompt template.
input_variables:
- name: request
description: Request details.
is_required: true
- name: imageData
description: Base64 image data.
is_required: true
To use this prompt, you load it as an embedded resource, convert it to a function and then invoke it.
// Load prompt from resource
var handlebarsPromptYaml = EmbeddedResource.Read("HandlebarsPrompt.yaml");
// Create the prompt function from the YAML resource
var templateFactory = new HandlebarsPromptTemplateFactory();
var function = kernel.CreateFunctionFromPromptYaml(handlebarsPromptYaml, templateFactory);
// Input data for the prompt rendering and execution
var arguments = new KernelArguments(new Dictionary<string, object?>
{
{"request","Describe this image:"},
{"imageData", ""}
});
// Invoke the prompt function
var response = await kernel.InvokeAsync(function, arguments);
import yaml
# Load YAML prompt from file
with open("HandlebarsPrompt.yaml", "r") as f:
yaml_prompt = yaml.safe_load(f)
prompt_config = PromptTemplateConfig(
template=yaml_prompt["template"],
template_format="handlebars",
name=yaml_prompt.get("name", "Vision_Chat_Prompt")
)
function = HandlebarsPromptTemplate(prompt_template_config=prompt_config)
arguments = {
"request": "Describe this image:",
"imageData": ""
}
async def main():
result = await kernel.invoke_prompt(
prompt=prompt_config.template,
request=arguments["request"],
imageData=arguments["imageData"],
service_id="chat_completion",
template_format="handlebars"
)
print("Kernel result:", result)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
Using Handlebars templates with Semantic Kernel is a simple and effective way to create dynamic prompts for your applications. The Handlebars syntax is easy to use and allows you to include variables, manage prompts in YAML for better organization, and integrate AI-driven functions seamlessly. This approach makes your prompts more flexible, reusable, and easier to maintain.
You can learn more about Handlebars prompt templates from the Handlebars Guide.