winrt::single_threaded_observable_vector function template (C++/WinRT)
A function template that creates and returns an object of a type that implements an observable collection. The object is returned as an IObservableVector, and that's the interface via which you call the returned object's functions and properties.
You can optionally pass an existing std::vector rvalue into the function—either pass a temporary object, or call std::move on an lvalue.
For more info, and code examples, see Collections with C++/WinRT.
Syntax
template <typename T, typename Allocator = std::allocator<T>>
winrt::Windows::Foundation::Collections::IObservableVector<T> single_threaded_observable_vector(std::vector<T, Allocator>&& values = {})
Template parameters
typename T
The type of the elements of the collection.
typename Allocator
The type of the allocator of the vector from which you initialize the collection, if you pass one, otherwise the default allocator.
Parameters
values
An optional reference to an rvalue of type std::vector from which to initialize the elements of the collection object.
Return value
An IObservableVector representing a new collection object.
Requirements
Minimum supported SDK: Windows SDK version 10.0.17763.0 (Windows 10, version 1809)
Namespace: winrt
Header: %WindowsSdkDir%Include<WindowsTargetPlatformVersion>\cppwinrt\winrt\base.h (included by default)
If you have an older version of the Windows SDK
If you don't have the Windows SDK version 10.0.17763.0 (Windows 10, version 1809), or later, then you'll need to implement your own observable vector template to serve as a useful, general-purpose implementation of IObservableVector<T>. Below is a listing of a class called single_threaded_observable_vector<T>. It'll be easy to switch over from the type below to winrt::single_threaded_observable_vector when you're on a version of the Windows SDK that contains it.
// single_threaded_observable_vector.h
#pragma once
namespace winrt::Bookstore::implementation
{
using namespace Windows::Foundation::Collections;
template <typename T>
struct single_threaded_observable_vector : implements<single_threaded_observable_vector<T>,
IObservableVector<T>,
IVector<T>,
IVectorView<T>,
IIterable<T>>
{
event_token VectorChanged(VectorChangedEventHandler<T> const& handler)
{
return m_changed.add(handler);
}
void VectorChanged(event_token const cookie)
{
m_changed.remove(cookie);
}
T GetAt(uint32_t const index) const
{
if (index >= m_values.size())
{
throw hresult_out_of_bounds();
}
return m_values[index];
}
uint32_t Size() const noexcept
{
return static_cast<uint32_t>(m_values.size());
}
IVectorView<T> GetView()
{
return *this;
}
bool IndexOf(T const& value, uint32_t& index) const noexcept
{
index = static_cast<uint32_t>(std::find(m_values.begin(), m_values.end(), value) - m_values.begin());
return index < m_values.size();
}
void SetAt(uint32_t const index, T const& value)
{
if (index >= m_values.size())
{
throw hresult_out_of_bounds();
}
++m_version;
m_values[index] = value;
m_changed(*this, make<args>(CollectionChange::ItemChanged, index));
}
void InsertAt(uint32_t const index, T const& value)
{
if (index > m_values.size())
{
throw hresult_out_of_bounds();
}
++m_version;
m_values.insert(m_values.begin() + index, value);
m_changed(*this, make<args>(CollectionChange::ItemInserted, index));
}
void RemoveAt(uint32_t const index)
{
if (index >= m_values.size())
{
throw hresult_out_of_bounds();
}
++m_version;
m_values.erase(m_values.begin() + index);
m_changed(*this, make<args>(CollectionChange::ItemRemoved, index));
}
void Append(T const& value)
{
++m_version;
m_values.push_back(value);
m_changed(*this, make<args>(CollectionChange::ItemInserted, Size() - 1));
}
void RemoveAtEnd()
{
if (m_values.empty())
{
throw hresult_out_of_bounds();
}
++m_version;
m_values.pop_back();
m_changed(*this, make<args>(CollectionChange::ItemRemoved, Size()));
}
void Clear() noexcept
{
++m_version;
m_values.clear();
m_changed(*this, make<args>(CollectionChange::Reset, 0));
}
uint32_t GetMany(uint32_t const startIndex, array_view<T> values) const
{
if (startIndex >= m_values.size())
{
return 0;
}
uint32_t actual = static_cast<uint32_t>(m_values.size() - startIndex);
if (actual > values.size())
{
actual = values.size();
}
std::copy_n(m_values.begin() + startIndex, actual, values.begin());
return actual;
}
void ReplaceAll(array_view<T const> value)
{
++m_version;
m_values.assign(value.begin(), value.end());
m_changed(*this, make<args>(CollectionChange::Reset, 0));
}
IIterator<T> First()
{
return make<iterator>(this);
}
private:
std::vector<T> m_values;
event<VectorChangedEventHandler<T>> m_changed;
uint32_t m_version{};
struct args : implements<args, IVectorChangedEventArgs>
{
args(CollectionChange const change, uint32_t const index) :
m_change(change),
m_index(index)
{
}
CollectionChange CollectionChange() const
{
return m_change;
}
uint32_t Index() const
{
return m_index;
}
private:
Windows::Foundation::Collections::CollectionChange const m_change{};
uint32_t const m_index{};
};
struct iterator : implements<iterator, IIterator<T>>
{
explicit iterator(single_threaded_observable_vector<T>* owner) noexcept :
m_version(owner->m_version),
m_current(owner->m_values.begin()),
m_end(owner->m_values.end())
{
m_owner.copy_from(owner);
}
void abi_enter() const
{
if (m_version != m_owner->m_version)
{
throw hresult_changed_state();
}
}
T Current() const
{
if (m_current == m_end)
{
throw hresult_out_of_bounds();
}
return*m_current;
}
bool HasCurrent() const noexcept
{
return m_current != m_end;
}
bool MoveNext() noexcept
{
if (m_current != m_end)
{
++m_current;
}
return HasCurrent();
}
uint32_t GetMany(array_view<T> values)
{
uint32_t actual = static_cast<uint32_t>(std::distance(m_current, m_end));
if (actual > values.size())
{
actual = values.size();
}
std::copy_n(m_current, actual, values.begin());
std::advance(m_current, actual);
return actual;
}
private:
com_ptr<single_threaded_observable_vector<T>> m_owner;
uint32_t const m_version;
typename std::vector<T>::const_iterator m_current;
typename std::vector<T>::const_iterator const m_end;
};
};
}
The Append function illustrates how to raise the IObservableVector<T>::VectorChanged event.
m_changed(*this, make<args>(CollectionChange::ItemInserted, Size() - 1));
The event arguments indicate both that an element was inserted, and also what its index is (the last element, in this case). These arguments enable a XAML items control to respond to the event and to refresh itself in the optimal way.
This is how you'd create an instance of the type defined above. Instead of calling the winrt::single_threaded_observable_vector factory function template, you create the collection object by calling winrt::make.
#include "single_threaded_observable_vector.h"
...
winrt::Windows::Foundation::Collections::IVector<winrt::Windows::Foundation::IInspectable> m_bookSkus;
...
m_bookSkus = winrt::make<winrt::Bookstore::implementation::single_threaded_observable_vector<winrt::Windows::Foundation::IInspectable>>();