Edit

Share via


Writing an Effect (Direct3D 9)

Writing an effect requires that you understand effect syntax, and generate the required state information. You can add shader state, texture and sampler state, and all of the pipeline state that your application requires in an effect.

The effect syntax is detailed in the Effect Format (Direct3D 9). An effect is typically encapsulated into an effect file (.fx) but could also be written as a text string in an application.

Effect Example

Effects contain three types of state: shader state, texture and sampler state, and pipeline state. Here is an example of an effect from the BasicHLSL Sample:

// Global variables
float4 g_MaterialAmbientColor;      // Material's ambient color
float4 g_MaterialDiffuseColor;      // Material's diffuse color
int g_nNumLights;

float3 g_LightDir[3];               // Light's direction in world space
float4 g_LightDiffuse[3];           // Light's diffuse color
float4 g_LightAmbient;              // Light's ambient color

texture g_MeshTexture;              // Color texture for mesh

float    g_fTime;                   // App's time in seconds
float4x4 g_mWorld;                  // World matrix for object
float4x4 g_mWorldViewProjection;    // World * View * Projection matrix
// Texture samplers
sampler MeshTextureSampler = 
sampler_state
{
    Texture = <g_MeshTexture>;
    MipFilter = LINEAR;
    MinFilter = LINEAR;
    MagFilter = LINEAR;
};
struct VS_OUTPUT
{
    float4 Position   : POSITION;   // vertex position 
    float2 TextureUV  : TEXCOORD0;  // vertex texture coords 
    float4 Diffuse    : COLOR0;     // vertex diffuse color
};
VS_OUTPUT RenderSceneVS( float4 vPos : POSITION, 
                         float3 vNormal : NORMAL,
                         float2 vTexCoord0 : TEXCOORD0,
                         uniform int nNumLights,
                         uniform bool bTexture,
                         uniform bool bAnimate )
{
    VS_OUTPUT Output;
    float3 vNormalWorldSpace;
  
    float4 vAnimatedPos = vPos;
    
    // Animation the vertex based on time and the vertex's object space position
    if( bAnimate )
        vAnimatedPos += float4(vNormal, 0) * (sin(g_fTime+5.5)+0.5)*5;
    
    // Transform the position from object space to homogeneous projection space
    Output.Position = mul(vAnimatedPos, g_mWorldViewProjection);
    
    // Transform the normal from object space to world space    
    vNormalWorldSpace = normalize(mul(vNormal, (float3x3)g_mWorld));
    
    // Compute simple directional lighting equation
    float3 vTotalLightDiffuse = float3(0,0,0);
    for(int i=0; i < nNumLights; i++ )
        vTotalLightDiffuse += g_LightDiffuse[i] * max(0,dot(vNormalWorldSpace, g_LightDir[i]));
        
    Output.Diffuse.rgb = g_MaterialDiffuseColor * vTotalLightDiffuse + 
                         g_MaterialAmbientColor * g_LightAmbient;   
    Output.Diffuse.a = 1.0f; 
    
    // Just copy the texture coordinate through
    if( bTexture ) 
        Output.TextureUV = vTexCoord0; 
    else
        Output.TextureUV = 0; 
    
    return Output;    
}
struct PS_OUTPUT
{
    float4 RGBColor : COLOR0;  // Pixel color    
};
PS_OUTPUT RenderScenePS( VS_OUTPUT In,
                         uniform bool bTexture ) 
{ 
    PS_OUTPUT Output;

    // Lookup mesh texture and modulate it with diffuse
    if( bTexture )
        Output.RGBColor = tex2D(MeshTextureSampler, In.TextureUV) * In.Diffuse;
    else
        Output.RGBColor = In.Diffuse;

    return Output;
}
technique RenderSceneWithTexture1Light
{
    pass P0
    {          
        VertexShader = compile vs_1_1 RenderSceneVS( 1, true, true );
        PixelShader  = compile ps_1_1 RenderScenePS( true ); 
    }
}

This effect contains:

  • The shader state, which is all of the state associated with the vertex shader and pixel shader. This is defined by the vertex and pixel shader functions, any global variables they require, and their input and output data structures, all of which are listed here:

    struct VS_OUTPUT
    {  ...  };
    VS_OUTPUT RenderSceneVS( float4 vPos : POSITION, 
                             ...
    {  ...  }
    
    struct PS_OUTPUT
    {  ...  };
    PS_OUTPUT RenderScenePS( VS_OUTPUT In,
                             uniform bool bTexture ) 
    {  ...  }
    
  • Texture and sampler state, which are the global variables for the texture object and the sampler object:

    texture g_MeshTexture;              // Color texture for mesh
    
    sampler MeshTextureSampler = 
    sampler_state
    {
       ...
    };
    
  • The other effect state. There is no other effect state explicitly used in this example. If there were, it would be the technique inside of the pass to which it applied:

    technique RenderSceneWithTexture1Light
    {
        pass P0
        {          
            // Any other effect state can be set here.
    
            VertexShader = compile vs_1_1 RenderSceneVS( 1, true, true );
            PixelShader  = compile ps_1_1 RenderScenePS( true ); 
        }
    }
    
    

Effects Contain One or More Techniques and Passes

Effect rendering options are controlled by adding techniques and passes.

Effects can be created with additional passes to facilitate more complex rendering effects. A technique supports an arbitrary number of passes:

technique T0
{
    pass P0
    { ... }

    pass P1
    { ... }

    ...

    pass Pn
    { ... }
}

Effects can also be created with an arbitrary number of techniques.

technique T0
{
    pass P0
    { ... }
}

technique T1
{
    pass P0
    { ... }

    pass P1
    { ... }
}

...

technique Tn
{
    pass P0
    { ... }
}

technique TVertexShaderOnly
{
    pass P0
    {
        VertexShader =
        asm
        {
         // assembly-language shader code goes here
         ...
        };
    }
}

The techniques and passes can be given arbitrary names.

Effects