System.AccessViolationException: Attempted to read or write protected memory at TorchSharp.PInvoke.LibTorchSharp.THSGenerator_manual_seed
I was trying to reproduce the example of ML.Net in GitHub: machinelearning-samples/samples/csharp/getting-started/MLNET2/SentenceSimilarity and I got the following error :
Fatal error. System.AccessViolationException: Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
Repeat 2 times: --------------------------------
at TorchSharp.PInvoke.LibTorchSharp.THSGenerator_manual_seed(Int64) -------------------------------- at TorchSharp.torch+random.manual_seed(Int64) at Microsoft.ML.TorchSharp.NasBert.NasBertTrainer`2+TrainerBase[[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e],[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=7cec85d7bea7798e]].TrainStep(Microsoft.ML.DataViewRowCursor, Microsoft.ML.ValueGetter1>, Microsoft.ML.ValueGetter
1>, Microsoft.ML.ValueGetter1, System.Collections.Generic.List
1 ByRef, System.Collections.Generic.List1 ByRef) at Microsoft.ML.TorchSharp.NasBert.NasBertTrainer
2+TrainerBase[[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e],[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e]].Train(Microsoft.ML.IDataView) at Microsoft.ML.TorchSharp.NasBert.NasBertTrainer2[[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e],[System.Single, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e]].Fit(Microsoft.ML.IDataView) at Microsoft.ML.Data.EstimatorChain
1[[System.__Canon, System.Private.CoreLib, Version=8.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e]].Fit(Microsoft.ML.IDataView)
at Program.$(System.String[])
in this line:
var model = pipeline.Fit(dataSplit.TrainSet);
the complete code is the following:
using Microsoft.ML.Data;
using Microsoft.ML.TorchSharp;
using MathNet.Numerics.Statistics;
using Microsoft.ML.Transforms;
// Initialize MLContext
var ctx = new MLContext();
// (Optional) Use GPU
ctx.GpuDeviceId = 0;
ctx.FallbackToCpu = false;
// Log training output
ctx.Log += (o, e) => {
if (e.Source.Contains("NasBertTrainer"))
Console.WriteLine(e.Message);
};
// Load data into IDataView
var columns = new[]
{
new TextLoader.Column("search_term",DataKind.String,3),
new TextLoader.Column("relevance",DataKind.Single,4),
new TextLoader.Column("product_description",DataKind.String,5)
};
var loaderOptions = new TextLoader.Options()
{
Columns = columns,
HasHeader = true,
Separators = new[] { ',' },
MaxRows = 1000 // Dataset has 75k rows. Only load 1k for quicker training
};
var dataPath = Path.GetFullPath(@"C:\Dropbox\Documents\Visual Studio 2019\source\repos\Machine Learning & AI\home-depot-sentence-similarity.csv");
var textLoader = ctx.Data.CreateTextLoader(loaderOptions);
var data = textLoader.Load(dataPath);
// Split data into 80% training, 20% testing
var dataSplit = ctx.Data.TrainTestSplit(data, testFraction: 0.2);
// Define pipeline
var pipeline =
ctx.Transforms.ReplaceMissingValues("relevance", replacementMode: MissingValueReplacingEstimator.ReplacementMode.Mean)
.Append(ctx.Regression.Trainers.SentenceSimilarity(labelColumnName: "relevance", sentence1ColumnName: "search_term", sentence2ColumnName: "product_description"));
// Train the model
var model = pipeline.Fit(dataSplit.TrainSet); // THIS IS THE LINE THAT PRODUCED THE ERROR
// Use the model to make predictions on the test dataset
var predictions = model.Transform(dataSplit.TestSet);
// Evaluate the model
Evaluate(predictions, "relevance", "Score");
// Save the model
ctx.Model.Save(model, data.Schema, "model.zip");
void Evaluate(IDataView predictions, string actualColumnName, string predictedColumnName)
{
var actual =
predictions.GetColumn<float>(actualColumnName)
.Select(x => (double)x);
var predicted =
predictions.GetColumn<float>(predictedColumnName)
.Select(x => (double)x);
var corr = Correlation.Pearson(actual, predicted);
Console.WriteLine($"Pearson Correlation: {corr}");
}
I used the same version of the packages that were used in the example:
MathNet.Numeric.Signed (5.00)
Microsoft.ML (2.0.0)
Microsoft.ML.TorchSharp (0.20.0)
TorchSharp-cuda-windows (0.98.3)
but the error still occur.
Any idea?
Thanks