Nota:
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
Microsoft Agent Framework admite la adición de funcionalidades de generación aumentada de recuperación (RAG) a los agentes fácilmente mediante la adición de proveedores de contexto de IA al agente.
Para conocer los patrones de conversación y sesión junto con la recuperación, consulte Información general sobre conversaciones y memoria.
Uso de TextSearchProvider
La TextSearchProvider clase es una implementación integrada de un proveedor de contexto RAG.
Se puede asociar fácilmente a mediante ChatClientAgent la AIContextProviderFactory opción para proporcionar funcionalidades rag al agente.
El generador es una función asincrónica que recibe un objeto de contexto y un token de cancelación.
// Create the AI agent with the TextSearchProvider as the AI context provider.
AIAgent agent = azureOpenAIClient
.GetChatClient(deploymentName)
.AsAIAgent(new ChatClientAgentOptions
{
ChatOptions = new() { Instructions = "You are a helpful support specialist for Contoso Outdoors. Answer questions using the provided context and cite the source document when available." },
AIContextProviderFactory = (ctx, ct) => new ValueTask<AIContextProvider>(
new TextSearchProvider(SearchAdapter, ctx.SerializedState, ctx.JsonSerializerOptions, textSearchOptions))
});
TextSearchProvider requiere una función que proporcione los resultados de la búsqueda dada una consulta. Esto se puede implementar mediante cualquier tecnología de búsqueda, por ejemplo, Azure AI Search o un motor de búsqueda web.
Este es un ejemplo de una función de búsqueda simulada que devuelve resultados predefinidos en función de la consulta.
SourceName y SourceLink son opcionales, pero si el agente lo usará para citar el origen de la información al responder a la pregunta del usuario.
static Task<IEnumerable<TextSearchProvider.TextSearchResult>> SearchAdapter(string query, CancellationToken cancellationToken)
{
// The mock search inspects the user's question and returns pre-defined snippets
// that resemble documents stored in an external knowledge source.
List<TextSearchProvider.TextSearchResult> results = new();
if (query.Contains("return", StringComparison.OrdinalIgnoreCase) || query.Contains("refund", StringComparison.OrdinalIgnoreCase))
{
results.Add(new()
{
SourceName = "Contoso Outdoors Return Policy",
SourceLink = "https://contoso.com/policies/returns",
Text = "Customers may return any item within 30 days of delivery. Items should be unused and include original packaging. Refunds are issued to the original payment method within 5 business days of inspection."
});
}
return Task.FromResult<IEnumerable<TextSearchProvider.TextSearchResult>>(results);
}
Opciones de TextSearchProvider
TextSearchProvider se puede personalizar a través de la TextSearchProviderOptions clase . Este es un ejemplo de creación de opciones para ejecutar la búsqueda antes de cada invocación de modelo y mantener una breve ventana gradual del contexto de conversación.
TextSearchProviderOptions textSearchOptions = new()
{
// Run the search prior to every model invocation and keep a short rolling window of conversation context.
SearchTime = TextSearchProviderOptions.TextSearchBehavior.BeforeAIInvoke,
RecentMessageMemoryLimit = 6,
};
La TextSearchProvider clase admite las siguientes opciones a través de la TextSearchProviderOptions clase .
| Opción | Tipo | Description | Predeterminado |
|---|---|---|---|
| SearchTime | TextSearchProviderOptions.TextSearchBehavior |
Indica cuándo se debe ejecutar la búsqueda. Hay dos opciones, cada vez que se invoca el agente o a petición a través de una llamada a función. | TextSearchProviderOptions.TextSearchBehavior.BeforeAIInvoke |
| FunctionToolName | string |
Nombre de la herramienta de búsqueda expuesta al operar en modo a petición. | "Buscar" |
| FunctionToolDescription | string |
Descripción de la herramienta de búsqueda expuesta al operar en modo a petición. | "Permite buscar información adicional para ayudar a responder a la pregunta del usuario". |
| ContextPrompt | string |
El símbolo del sistema de contexto prefijo a los resultados al operar en BeforeAIInvoke modo. |
"## Contexto adicional\nTenga en cuenta la siguiente información de los documentos de origen al responder al usuario: |
| CitasPrompt | string |
La instrucción anexada después de los resultados para solicitar citas al operar en BeforeAIInvoke modo. |
"Incluya citas al documento de origen con el nombre del documento y vincule si el nombre del documento y el vínculo están disponibles". |
| ContextFormatter | Func<IList<TextSearchProvider.TextSearchResult>, string> |
Delegado opcional para personalizar completamente el formato de la lista de resultados al operar en BeforeAIInvoke modo. Si se proporciona y ContextPromptCitationsPrompt se omiten. |
null |
| RecentMessageMemoryLimit | int |
El número de mensajes de conversación recientes (tanto el usuario como el asistente) que se conservan en la memoria e incluyen al construir la entrada de búsqueda para BeforeAIInvoke las búsquedas. |
0 (deshabilitado) |
| RecentMessageRolesIncluded | List<ChatRole> |
Lista de ChatRole tipos a los que se van a filtrar los mensajes recientes a al decidir qué mensajes recientes se van a incluir al construir la entrada de búsqueda. |
ChatRole.User |
Sugerencia
Consulte los ejemplos de .NET para obtener ejemplos completos de ejecución.
Agent Framework admite el uso de colecciones VectorStore del kernel semántico para proporcionar funcionalidades rag a los agentes. Esto se logra a través de la funcionalidad de puente que convierte las funciones de búsqueda semántica del kernel en herramientas de Agent Framework.
Creación de una herramienta de búsqueda desde VectorStore
El create_search_function método de una colección VectorStore de kernel semántico devuelve un KernelFunction objeto que se puede convertir en una herramienta de Agent Framework mediante .as_agent_framework_tool().
Use la documentación de conectores de almacén de vectores para aprender a configurar diferentes colecciones de almacenes vectoriales.
from semantic_kernel.connectors.ai.open_ai import OpenAITextEmbedding
from semantic_kernel.connectors.azure_ai_search import AzureAISearchCollection
from semantic_kernel.functions import KernelParameterMetadata
from agent_framework.openai import OpenAIResponsesClient
# Define your data model
class SupportArticle:
article_id: str
title: str
content: str
category: str
# ... other fields
# Create an Azure AI Search collection
collection = AzureAISearchCollection[str, SupportArticle](
record_type=SupportArticle,
embedding_generator=OpenAITextEmbedding()
)
async with collection:
await collection.ensure_collection_exists()
# Load your knowledge base articles into the collection
# await collection.upsert(articles)
# Create a search function from the collection
search_function = collection.create_search_function(
function_name="search_knowledge_base",
description="Search the knowledge base for support articles and product information.",
search_type="keyword_hybrid",
parameters=[
KernelParameterMetadata(
name="query",
description="The search query to find relevant information.",
type="str",
is_required=True,
type_object=str,
),
KernelParameterMetadata(
name="top",
description="Number of results to return.",
type="int",
default_value=3,
type_object=int,
),
],
string_mapper=lambda x: f"[{x.record.category}] {x.record.title}: {x.record.content}",
)
# Convert the search function to an Agent Framework tool
search_tool = search_function.as_agent_framework_tool()
# Create an agent with the search tool
agent = OpenAIResponsesClient(model_id="gpt-4o").as_agent(
instructions="You are a helpful support specialist. Use the search tool to find relevant information before answering questions. Always cite your sources.",
tools=search_tool
)
# Use the agent with RAG capabilities
response = await agent.run("How do I return a product?")
print(response.text)
Importante
Esta característica requiere semantic-kernel la versión 1.38 o posterior.
Personalización del comportamiento de búsqueda
Puede personalizar la función de búsqueda con varias opciones:
# Create a search function with filtering and custom formatting
search_function = collection.create_search_function(
function_name="search_support_articles",
description="Search for support articles in specific categories.",
search_type="keyword_hybrid",
# Apply filters to restrict search scope
filter=lambda x: x.is_published == True,
parameters=[
KernelParameterMetadata(
name="query",
description="What to search for in the knowledge base.",
type="str",
is_required=True,
type_object=str,
),
KernelParameterMetadata(
name="category",
description="Filter by category: returns, shipping, products, or billing.",
type="str",
type_object=str,
),
KernelParameterMetadata(
name="top",
description="Maximum number of results to return.",
type="int",
default_value=5,
type_object=int,
),
],
# Customize how results are formatted for the agent
string_mapper=lambda x: f"Article: {x.record.title}\nCategory: {x.record.category}\nContent: {x.record.content}\nSource: {x.record.article_id}",
)
Para obtener los detalles completos sobre los parámetros disponibles para create_search_function, consulte la documentación del kernel semántico.
Uso de varias funciones de búsqueda
Puede proporcionar varias herramientas de búsqueda a un agente para distintos dominios de conocimiento:
# Create search functions for different knowledge bases
product_search = product_collection.create_search_function(
function_name="search_products",
description="Search for product information and specifications.",
search_type="semantic_hybrid",
string_mapper=lambda x: f"{x.record.name}: {x.record.description}",
).as_agent_framework_tool()
policy_search = policy_collection.create_search_function(
function_name="search_policies",
description="Search for company policies and procedures.",
search_type="keyword_hybrid",
string_mapper=lambda x: f"Policy: {x.record.title}\n{x.record.content}",
).as_agent_framework_tool()
# Create an agent with multiple search tools
agent = chat_client.as_agent(
instructions="You are a support agent. Use the appropriate search tool to find information before answering. Cite your sources.",
tools=[product_search, policy_search]
)
También puede crear varias funciones de búsqueda desde la misma colección con diferentes descripciones y parámetros para proporcionar funcionalidades de búsqueda especializadas:
# Create multiple search functions from the same collection
# Generic search for broad queries
general_search = support_collection.create_search_function(
function_name="search_all_articles",
description="Search all support articles for general information.",
search_type="semantic_hybrid",
parameters=[
KernelParameterMetadata(
name="query",
description="The search query.",
type="str",
is_required=True,
type_object=str,
),
],
string_mapper=lambda x: f"{x.record.title}: {x.record.content}",
).as_agent_framework_tool()
# Detailed lookup for specific article IDs
detail_lookup = support_collection.create_search_function(
function_name="get_article_details",
description="Get detailed information for a specific article by its ID.",
search_type="keyword",
top=1,
parameters=[
KernelParameterMetadata(
name="article_id",
description="The specific article ID to retrieve.",
type="str",
is_required=True,
type_object=str,
),
],
string_mapper=lambda x: f"Title: {x.record.title}\nFull Content: {x.record.content}\nLast Updated: {x.record.updated_date}",
).as_agent_framework_tool()
# Create an agent with both search functions
agent = chat_client.as_agent(
instructions="You are a support agent. Use search_all_articles for general queries and get_article_details when you need full details about a specific article.",
tools=[general_search, detail_lookup]
)
Este enfoque permite al agente elegir la estrategia de búsqueda más adecuada en función de la consulta del usuario.
Ejemplo completo
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from collections.abc import MutableSequence, Sequence
from typing import Any
from agent_framework import Agent, BaseContextProvider, Context, Message, SupportsChatGetResponse
from agent_framework.azure import AzureAIClient
from azure.identity.aio import AzureCliCredential
from pydantic import BaseModel
class UserInfo(BaseModel):
name: str | None = None
age: int | None = None
class UserInfoMemory(BaseContextProvider):
def __init__(self, client: SupportsChatGetResponse, user_info: UserInfo | None = None, **kwargs: Any):
"""Create the memory.
If you pass in kwargs, they will be attempted to be used to create a UserInfo object.
"""
self._chat_client = client
if user_info:
self.user_info = user_info
elif kwargs:
self.user_info = UserInfo.model_validate(kwargs)
else:
self.user_info = UserInfo()
async def invoked(
self,
request_messages: Message | Sequence[Message],
response_messages: Message | Sequence[Message] | None = None,
invoke_exception: Exception | None = None,
**kwargs: Any,
) -> None:
"""Extract user information from messages after each agent call."""
# Check if we need to extract user info from user messages
user_messages = [msg for msg in request_messages if hasattr(msg, "role") and msg.role == "user"] # type: ignore
if (self.user_info.name is None or self.user_info.age is None) and user_messages:
try:
# Use the chat client to extract structured information
result = await self._chat_client.get_response(
messages=request_messages, # type: ignore
instructions="Extract the user's name and age from the message if present. "
"If not present return nulls.",
options={"response_format": UserInfo},
)
# Update user info with extracted data
try:
extracted = result.value
if self.user_info.name is None and extracted.name:
self.user_info.name = extracted.name
if self.user_info.age is None and extracted.age:
self.user_info.age = extracted.age
except Exception:
pass # Failed to extract, continue without updating
except Exception:
pass # Failed to extract, continue without updating
async def invoking(self, messages: Message | MutableSequence[Message], **kwargs: Any) -> Context:
"""Provide user information context before each agent call."""
instructions: list[str] = []
if self.user_info.name is None:
instructions.append(
"Ask the user for their name and politely decline to answer any questions until they provide it."
)
else:
instructions.append(f"The user's name is {self.user_info.name}.")
if self.user_info.age is None:
instructions.append(
"Ask the user for their age and politely decline to answer any questions until they provide it."
)
else:
instructions.append(f"The user's age is {self.user_info.age}.")
# Return context with additional instructions
return Context(instructions=" ".join(instructions))
def serialize(self) -> str:
"""Serialize the user info for thread persistence."""
return self.user_info.model_dump_json()
async def main():
async with AzureCliCredential() as credential:
client = AzureAIClient(credential=credential)
# Create the memory provider
memory_provider = UserInfoMemory(client)
# Create the agent with memory
async with Agent(
client=client,
instructions="You are a friendly assistant. Always address the user by their name.",
context_providers=[memory_provider],
) as agent:
# Create a new thread for the conversation
thread = agent.create_session()
print(await agent.run("Hello, what is the square root of 9?", session=thread))
print(await agent.run("My name is Ruaidhrí", session=thread))
print(await agent.run("I am 20 years old", session=thread))
# Access the memory component and inspect the memories
user_info_memory = memory_provider
if user_info_memory:
print()
print(f"MEMORY - User Name: {user_info_memory.user_info.name}") # type: ignore
print(f"MEMORY - User Age: {user_info_memory.user_info.age}") # type: ignore
if __name__ == "__main__":
asyncio.run(main())
# Copyright (c) Microsoft. All rights reserved.
import asyncio
from collections.abc import MutableSequence, Sequence
from typing import Any
from agent_framework import Agent, BaseContextProvider, Context, Message, SupportsChatGetResponse
from agent_framework.azure import AzureAIClient
from azure.identity.aio import AzureCliCredential
from pydantic import BaseModel
class UserInfo(BaseModel):
name: str | None = None
age: int | None = None
class UserInfoMemory(BaseContextProvider):
def __init__(self, client: SupportsChatGetResponse, user_info: UserInfo | None = None, **kwargs: Any):
"""Create the memory.
If you pass in kwargs, they will be attempted to be used to create a UserInfo object.
"""
self._chat_client = client
if user_info:
self.user_info = user_info
elif kwargs:
self.user_info = UserInfo.model_validate(kwargs)
else:
self.user_info = UserInfo()
async def invoked(
self,
request_messages: Message | Sequence[Message],
response_messages: Message | Sequence[Message] | None = None,
invoke_exception: Exception | None = None,
**kwargs: Any,
) -> None:
"""Extract user information from messages after each agent call."""
# Check if we need to extract user info from user messages
user_messages = [msg for msg in request_messages if hasattr(msg, "role") and msg.role == "user"] # type: ignore
if (self.user_info.name is None or self.user_info.age is None) and user_messages:
try:
# Use the chat client to extract structured information
result = await self._chat_client.get_response(
messages=request_messages, # type: ignore
instructions="Extract the user's name and age from the message if present. "
"If not present return nulls.",
options={"response_format": UserInfo},
)
# Update user info with extracted data
try:
extracted = result.value
if self.user_info.name is None and extracted.name:
self.user_info.name = extracted.name
if self.user_info.age is None and extracted.age:
self.user_info.age = extracted.age
except Exception:
pass # Failed to extract, continue without updating
except Exception:
pass # Failed to extract, continue without updating
async def invoking(self, messages: Message | MutableSequence[Message], **kwargs: Any) -> Context:
"""Provide user information context before each agent call."""
instructions: list[str] = []
if self.user_info.name is None:
instructions.append(
"Ask the user for their name and politely decline to answer any questions until they provide it."
)
else:
instructions.append(f"The user's name is {self.user_info.name}.")
if self.user_info.age is None:
instructions.append(
"Ask the user for their age and politely decline to answer any questions until they provide it."
)
else:
instructions.append(f"The user's age is {self.user_info.age}.")
# Return context with additional instructions
return Context(instructions=" ".join(instructions))
def serialize(self) -> str:
"""Serialize the user info for thread persistence."""
return self.user_info.model_dump_json()
async def main():
async with AzureCliCredential() as credential:
client = AzureAIClient(credential=credential)
# Create the memory provider
memory_provider = UserInfoMemory(client)
# Create the agent with memory
async with Agent(
client=client,
instructions="You are a friendly assistant. Always address the user by their name.",
context_providers=[memory_provider],
) as agent:
# Create a new thread for the conversation
thread = agent.create_session()
print(await agent.run("Hello, what is the square root of 9?", session=thread))
print(await agent.run("My name is Ruaidhrí", session=thread))
print(await agent.run("I am 20 years old", session=thread))
# Access the memory component and inspect the memories
user_info_memory = memory_provider
if user_info_memory:
print()
print(f"MEMORY - User Name: {user_info_memory.user_info.name}") # type: ignore
print(f"MEMORY - User Age: {user_info_memory.user_info.age}") # type: ignore
if __name__ == "__main__":
asyncio.run(main())
Conectores vectorstore admitidos
Este patrón funciona con cualquier conector de VectorStore de kernel semántico, entre los que se incluyen:
- Azure AI Search (
AzureAISearchCollection) - Qdrant (
QdrantCollection) - Pinecone (
PineconeCollection) - Redis (
RedisCollection) - Weaviate (
WeaviateCollection) - In-Memory (
InMemoryVectorStoreCollection) - Y más
Cada conector proporciona el mismo create_search_function método que se puede puenter a las herramientas de Agent Framework, lo que le permite elegir la base de datos vectorial que mejor se adapte a sus necesidades. Consulte la lista completa aquí.