En este inicio rápido, le guiaremos a través de la configuración del entorno de desarrollo local con el SDK de Azure AI Foundry . Escribimos un aviso, lo ejecutamos como parte del código de su aplicación, rastreamos las llamadas LLM que se realizan y ejecutamos una evaluación básica de los resultados del LLM.
Sugerencia
El resto de este artículo muestra cómo usar un proyecto basado en hub. Seleccione Proyecto foundry en la parte superior de este artículo si quiere usar un proyecto Foundry en su lugar.
Prerrequisitos
- Una suscripción de Azure. Si no tiene una suscripción a Azure, cree una cuenta gratuita antes de empezar.
- Un proyecto basado en un centro. Si no está familiarizado con Azure AI Foundry y no tiene un proyecto basado en concentrador, seleccione Proyecto Foundry en la parte superior de este artículo para utilizar un Proyecto Foundry en su lugar.
Configure tu entorno de desarrollo
Configuración del entorno de desarrollo
Asegúrese de instalar estos paquetes:
pip install azure-ai-projects azure-ai-inference azure-identity
Implementar un modelo
Sugerencia
Dado que puede personalizar el panel izquierdo en el portal de Azure AI Foundry, es posible que vea elementos diferentes de los que se muestran en estos pasos. Si no ve lo que busca, seleccione ... Más en la parte inferior del panel izquierdo.
Inicie sesión en Azure AI Foundry.
Seleccione un proyecto basado en hub. Si no tiene un proyecto basado en concentrador, seleccione Proyecto Foundry en la parte superior de este artículo para usar un proyecto Foundry en su lugar.
Seleccione Catálogo de modelos en el panel izquierdo.
Seleccione el modelo gpt-4o-mini en la lista de modelos. Puede usar la barra de búsqueda para encontrarlo.
En la página de detalles del modelo, seleccione Implementar.
Deje el nombre de implementación predeterminado. Seleccione Implementar.
Una vez implementado el modelo, seleccione Abrir en el área de juegos para probarlo.
Compilación de la aplicación de chat
Cree un archivo denominado chat.py. Copie y pegue el siguiente código en él.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
project_connection_string = "<your-connection-string-goes-here>"
project = AIProjectClient.from_connection_string(
conn_str=project_connection_string, credential=DefaultAzureCredential()
)
chat = project.inference.get_chat_completions_client()
response = chat.complete(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "You are an AI assistant that speaks like a techno punk rocker from 2350. Be cool but not too cool. Ya dig?",
},
{"role": "user", "content": "Hey, can you help me with my taxes? I'm a freelancer."},
],
)
print(response.choices[0].message.content)
Inserción de la cadena de conexión
Es necesario contar con la cadena de conexión de tu proyecto para invocar Azure OpenAI en los modelos de Azure AI Foundry desde tu código.
Busque la cadena de conexión en el proyecto de Azure AI Foundry que creó en el inicio rápido del área de juegos de Azure AI Foundry. Abra el proyecto y busque la cadena de conexión en la página Información general.
Copie la cadena de conexión y reemplace <your-connection-string-goes-here>
en el archivo chat.py.
Ejecución del script de chat
Ejecute el script para ver la respuesta del modelo.
python chat.py
El script usa mensajes de entrada y salida codificados de forma rígida. En una aplicación real, tomaría la entrada de una aplicación cliente, generaría un mensaje del sistema con instrucciones internas para el modelo y, a continuación, llamaría al LLM con todos los mensajes.
Vamos a cambiar el script para que tome la entrada de una aplicación cliente y genere un mensaje del sistema mediante una plantilla de indicación.
Quite la última línea del script que imprime una respuesta.
Ahora, defina una función get_chat_response
que tome mensajes y contexto, genere un mensaje del sistema mediante una plantilla de indicación y llame a un modelo. Agregue este código al archivo chat.py existente:
from azure.ai.inference.prompts import PromptTemplate
def get_chat_response(messages, context):
# create a prompt template from an inline string (using mustache syntax)
prompt_template = PromptTemplate.from_string(
prompt_template="""
system:
You are an AI assistant that speaks like a techno punk rocker from 2350. Be cool but not too cool. Ya dig? Refer to the user by their first name, try to work their last name into a pun.
The user's first name is {{first_name}} and their last name is {{last_name}}.
"""
)
# generate system message from the template, passing in the context as variables
system_message = prompt_template.create_messages(data=context)
# add the prompt messages to the user messages
return chat.complete(
model="gpt-4o-mini",
messages=system_message + messages,
temperature=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
Nota:
La plantilla de indicación usa el formato Mustache.
La función get_chat_response podría agregarse fácilmente como una ruta a una aplicación FastAPI o Flask para habilitar la llamada a esta función desde una aplicación web front-end.
Ahora simula el paso de información de una aplicación de front-end a esta función. Agregue el código siguiente al final del archivo chat.py. No dude en jugar con el mensaje y agregar su propio nombre.
if __name__ == "__main__":
response = get_chat_response(
messages=[{"role": "user", "content": "what city has the best food in the world?"}],
context={"first_name": "Jessie", "last_name": "Irwin"},
)
print(response.choices[0].message.content)
Ejecute el script revisado para ver la respuesta del modelo con esta nueva entrada.
python chat.py
Paso siguiente
En este inicio rápido, usará Azure AI Foundry para:
- Creación de un proyecto
- Implementar un modelo
- Ejecución de una finalización de chat
- Creación y ejecución de un agente
- Carga de archivos en el agente
El SDK de Azure AI Foundry está disponible en varios lenguajes, como Python, Java, JavaScript y C#. En este inicio rápido se proporcionan instrucciones para cada uno de estos idiomas.
Sugerencia
El resto de este artículo muestra cómo usar un proyecto Foundry. Seleccione proyecto basado en hub en la parte superior de este artículo si desea usar un proyecto basado en hub en su lugar.
Prerrequisitos
- Una suscripción de Azure. Si no tiene una suscripción a Azure, cree una cuenta gratuita antes de empezar.
- Debe ser Propietario de la suscripción para recibir el control de acceso adecuado necesario para usar el proyecto.
Importante
Los elementos marcados (versión preliminar) en este artículo se encuentran actualmente en versión preliminar pública. Esta versión preliminar se ofrece sin acuerdo de nivel de servicio y no se recomienda para las cargas de trabajo de producción. Es posible que algunas características no sean compatibles o que tengan sus funcionalidades limitadas. Para más información, consulte Términos de uso complementarios para las versiones preliminares de Microsoft Azure.
Empezar con un proyecto y un modelo
Inicie sesión en Portal de la Fundición de IA de Azure.
En la página principal, busque y seleccione el modelo gpt-4o .
En la página de detalles del modelo, seleccione Usar este modelo.
Rellene un nombre que se usará para el proyecto y seleccione Crear.
Una vez creados los recursos, se encuentra en el área de juegos de chat.
Configuración del entorno
No es necesario instalar el portal de Azure AI Foundry.
Instalación de Python y la CLI de Azure
Instale estos paquetes:
pip install openai azure-ai-projects azure-identity
-
Copie el punto de conexión del proyecto de Azure AI Foundry en la sección Información general del proyecto. Lo usarás en un momento.
Sugerencia
Si no ves el punto de conexión del proyecto de Azure AI Foundry, estás usando un proyecto basado en concentrador. (Vea Tipos de proyectos). Cambiar a un proyecto Foundry o usar los pasos anteriores para crear uno.
Asegúrese de iniciar sesión con el comando de la CLI az login
(o az login --use-device-code
) para autenticarse antes de ejecutar los scripts de Python.
Instale Java y la CLI de Azure.
-
Copie el punto de conexión del proyecto de Azure AI Foundry en la sección Información general del proyecto. Lo usarás en un momento.
Sugerencia
Si no ves el punto de conexión del proyecto de Azure AI Foundry, estás usando un proyecto basado en concentrador. (Vea Tipos de proyectos). Cambiar a un proyecto Foundry o usar los pasos anteriores para crear uno.
Establezca estas variables de entorno para usarlas en los scripts:
# Azure AI Foundry Endpoint
AZURE_ENDPOINT=your_endpoint_here
# Azure AI Foundry Model Deployment Name
AZURE_DEPLOYMENT=your_deployment_name_here
# Project ID (Optional - will be generated if not provided)
PROJECT_ID=your_project_id_here
MODEL_DEPLOYMENT_NAME=gpt-4o
# Note: This sample uses DefaultAzureCredential for authentication
# Please ensure you are logged in with Azure CLI using 'az login'
# For more authentication options, see: https://learn.microsoft.com/en-us/java/api/overview/azure/identity-readme?view=azure-java-stable
Asegúrese de iniciar sesión con el comando de la CLI az login
(o az login --use-device-code
) para autenticarse antes de ejecutar los scripts de Java.
Descargue POM.XML en el IDE de Java.
Instalación de Node.js y la CLI de Azure
Asegúrese de iniciar sesión con el comando de la CLI az login
(o az login --use-device-code
) para autenticarse antes de ejecutar los scripts de JavaScript.
Descargue package.json.
Instalación de paquetes con npm install
-
Copie el punto de conexión del proyecto de Azure AI Foundry en la sección Información general del proyecto. Lo usarás en un momento.
Sugerencia
Si no ves el punto de conexión del proyecto de Azure AI Foundry, estás usando un proyecto basado en concentrador. (Vea Tipos de proyectos). Cambiar a un proyecto Foundry o usar los pasos anteriores para crear uno.
Establezca estas variables de entorno para usarlas en los scripts:
MODEL_DEPLOYMENT_NAME=gpt-4o
PROJECT_ENDPOINT=https://<your-foundry-resource-name>.services.ai.azure.com/api/projects/<your-foundry-project-name>
Instalación de C# y la CLI de Azure
Instale los paquetes:
Para trabajar con los servicios de Azure AI en el proyecto de .NET, deberá instalar varios paquetes NuGet. Agregue paquetes NuGet mediante la CLI de .NET en el terminal integrado:
# Add Azure AI SDK packages
dotnet add package Azure.Identity
dotnet add package Azure.AI.Projects
dotnet add package Azure.AI.Agents.Persistent
dotnet add package Azure.AI.Inference
-
Copie el punto de conexión del proyecto de Azure AI Foundry en la sección Información general del proyecto. Lo usarás en un momento.
Sugerencia
Si no ves el punto de conexión del proyecto de Azure AI Foundry, estás usando un proyecto basado en concentrador. (Vea Tipos de proyectos). Cambiar a un proyecto Foundry o usar los pasos anteriores para crear uno.
Establezca estas variables de entorno para usarlas en los scripts:
AZURE_AI_ENDPOINT=https://your.services.ai.azure.com/api/projects/project
AZURE_AI_MODEL=your_model_name
Asegúrese de iniciar sesión con el comando de la CLI az login
(o az login --use-device-code
) para autenticarse antes de ejecutar los scripts de C#.
Instalación de la CLI de Azure
Asegúrese de iniciar sesión con el comando de la CLI az login
(o az login --use-device-code
) para autenticarse antes de ejecutar el comando siguiente.
Obtenga un token de acceso temporal. Expirará en 60-90 minutos, necesitará actualizarlo después de eso.
az account get-access-token --scope https://ai.azure.com/.default
Guarde los resultados como la variable AZURE_AI_AUTH_TOKEN
de entorno .
Ejecución de una finalización de chat
Las conversaciones por chat son la piedra angular de las aplicaciones de inteligencia artificial. Con finalizaciones de chat, puede enviar una lista de mensajes y obtener una respuesta del modelo.
- En el área de juegos de chat, rellene el mensaje y seleccione el botón Enviar .
- El modelo devuelve una respuesta en el panel Respuesta .
Sustituya su punto de conexión por el endpoint
en este código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
models = project.inference.get_azure_openai_client(api_version="2024-10-21")
response = models.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful writing assistant"},
{"role": "user", "content": "Write me a poem about flowers"},
],
)
print(response.choices[0].message.content)
package com.azure.ai.foundry.samples;
import com.azure.ai.foundry.samples.utils.ConfigLoader;
import com.azure.ai.projects.ProjectsClient;
import com.azure.ai.projects.ProjectsClientBuilder;
import com.azure.ai.projects.models.chat.ChatClient;
import com.azure.ai.projects.models.chat.ChatCompletion;
import com.azure.ai.projects.models.chat.ChatCompletionOptions;
import com.azure.ai.projects.models.chat.ChatMessage;
import com.azure.ai.projects.models.chat.ChatRole;
import com.azure.identity.DefaultAzureCredential;
import com.azure.identity.DefaultAzureCredentialBuilder;
import com.azure.ai.projects.models.chat.ChatCompletionResponse;
import java.util.Arrays;
import java.util.List;
/**
* This sample demonstrates how to use the chat completion API with the Azure AI Foundry SDK.
*
* Chat completions allow you to have interactive, conversational interactions with AI models
* by providing a list of messages and receiving AI-generated responses that maintain context
* across the conversation.
*
* This sample shows:
* 1. How to authenticate with Azure AI Foundry using DefaultAzureCredential
* 2. How to create a chat client for a specific model deployment
* 3. How to structure a conversation with system and user messages
* 4. How to configure and send a chat completion request
* 5. How to process and display the AI-generated response
*
* Prerequisites:
* - An Azure account with access to Azure AI Foundry
* - Azure CLI installed and logged in ('az login')
* - Environment variables set in .env file (AZURE_ENDPOINT, AZURE_DEPLOYMENT)
*/
public class ChatCompletionSample {
public static void main(String[] args) {
// Load configuration values from the .env file
// These include the service endpoint and the deployment name of the model to use
String endpoint = ConfigLoader.getAzureEndpoint();
String deploymentName = ConfigLoader.getAzureDeployment();
// Get DefaultAzureCredential for authentication
// This uses the most appropriate authentication method based on the environment
// For local development, it will use your Azure CLI login credentials
DefaultAzureCredential credential = ConfigLoader.getDefaultCredential();
// Create a projects client to interact with Azure AI Foundry services
// The client requires an authentication credential and an endpoint
ProjectsClient client = new ProjectsClientBuilder()
.credential(credential)
.endpoint(endpoint)
.buildClient();
// Get a chat client for the specified model deployment
// This client provides access to chat completion functionality
ChatClient chatClient = client.getChatClient(deploymentName);
// Create a list of chat messages to form the conversation
// This includes a system message to set the assistant's behavior
// and a user message containing the user's question or prompt
List<ChatMessage> messages = Arrays.asList(
new ChatMessage(ChatRole.SYSTEM, "You are a helpful assistant."),
new ChatMessage(ChatRole.USER, "Tell me about Azure AI Foundry.")
);
// Configure chat completion options including the messages, temperature, and token limit
// - Temperature controls randomness: lower values (like 0.2) give more focused responses,
// higher values (like 0.8) give more creative responses
// - MaxTokens limits the length of the response
ChatCompletionOptions options = new ChatCompletionOptions(messages)
.setTemperature(0.7) // Balanced between deterministic and creative
.setMaxTokens(800); // Limit response length
System.out.println("Sending chat completion request...");
// Send the request and get the AI-generated completion
ChatCompletion completion = chatClient.getChatCompletion(options);
// Display the response
System.out.println("\nResponse from assistant:");
System.out.println(completion.getChoices().get(0).getMessage().getContent());
// Display usage statistics
System.out.println("\nUsage Statistics:");
System.out.println("Prompt Tokens: " + completion.getUsage().getPromptTokens());
System.out.println("Completion Tokens: " + completion.getUsage().getCompletionTokens());
System.out.println("Total Tokens: " + completion.getUsage().getTotalTokens());
}
}
// Get the Azure AI endpoint and deployment name from environment variables
const endpoint = process.env.PROJECT_ENDPOINT;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
// Create an Azure OpenAI Client
const project = new AIProjectClient(endpoint, new DefaultAzureCredential());
const client = await project.inference.azureOpenAI({
// The API version should match the version of the Azure OpenAI resource
apiVersion: "2024-12-01-preview"
});
// Create a chat completion
const chatCompletion = await client.chat.completions.create({
model: deployment,
messages: [
{ role: "system", content: "You are a helpful writing assistant" },
{ role: "user", content: "Write me a poem about flowers" },
],
});
console.log(`\n==================== 🌷 COMPLETIONS POEM ====================\n`);
console.log(chatCompletion.choices[0].message.content);
using Azure;
using Azure.Identity;
using Azure.AI.Projects;
using Azure.AI.Inference;
var projectEndpoint = new Uri(System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT"));
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
var credential = new DefaultAzureCredential();
AIProjectClient client = new AIProjectClient(projectEndpoint, credential);
ChatCompletionsClient chatClient = client.GetChatCompletionsClient();
var requestOptions = new ChatCompletionsOptions()
{
Messages =
{
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many feet are in a mile?"),
},
Model = modelDeploymentName
};
Response<ChatCompletions> response = chatClient.Complete(requestOptions);
Console.WriteLine(response.Value.Content);
Reemplace YOUR-FOUNDRY-RESOURCE-NAME
con sus valores:
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-10-21' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"messages": [
{"role": "system",
"content": "You are a helpful writing assistant"},
{"role": "user",
"content": "Write me a poem about flowers"}
],
"model": "gpt-4o"
}'
Chatear con un agente
Los agentes tienen funcionalidades eficaces mediante el uso de herramientas. Empiece por chatear con un agente.
Cuando esté listo para probar un agente, se creará un agente predeterminado para usted automáticamente. Para chatear con este agente:
- En el panel izquierdo, seleccione Áreas de juegos.
- En la tarjeta de Área de juegos de agentes, seleccione Vamos.
- Agregue instrucciones, como "Usted es un asistente de escritura útil".
- Comience a hablar con su agente, por ejemplo, "Escriba un poema sobre flores".
Sustituya su punto de conexión por el endpoint
en este código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FilePurpose
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
agent = project.agents.create_agent(
model="gpt-4o",
name="my-agent",
instructions="You are a helpful writing assistant")
thread = project.agents.threads.create()
message = project.agents.messages.create(
thread_id=thread.id,
role="user",
content="Write me a poem about flowers")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
if run.status == "failed":
# Check if you got "Rate limit is exceeded.", then you want to get more quota
print(f"Run failed: {run.last_error}")
# Get messages from the thread
messages = project.agents.messages.list(thread_id=thread.id)
# Get the last message from the sender
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Delete the agent once done
project.agents.delete_agent(agent.id)
print("Deleted agent")
package com.azure.ai.foundry.samples;
import com.azure.ai.foundry.samples.utils.ConfigLoader;
import com.azure.ai.projects.ProjectsClient;
import com.azure.ai.projects.ProjectsClientBuilder;
import com.azure.ai.projects.models.agent.Agent;
import com.azure.ai.projects.models.agent.AgentClient;
import com.azure.ai.projects.models.agent.AgentMessage;
import com.azure.ai.projects.models.agent.AgentOptions;
import com.azure.ai.projects.models.agent.AgentRole;
import com.azure.ai.projects.models.agent.AgentRun;
import com.azure.ai.projects.models.agent.AgentRunStatus;
import com.azure.ai.projects.models.agent.AgentThread;
import com.azure.identity.DefaultAzureCredential;
import java.util.List;
/**
* This sample demonstrates how to create and run an agent using the Azure AI Foundry SDK.
*
* Agents in Azure AI Foundry are specialized AI assistants that can be customized with
* specific instructions and capabilities to perform particular tasks. They maintain conversation
* history in threads and can be deployed for various use cases.
*
* This sample shows:
* 1. How to authenticate with Azure AI Foundry using DefaultAzureCredential
* 2. How to create an agent with specific instructions and capabilities
* 3. How to create a thread for conversation with the agent
* 4. How to send messages to the agent and run it
* 5. How to wait for the agent to complete its execution
* 6. How to retrieve and display the agent's response
*
* Prerequisites:
* - An Azure account with access to Azure AI Foundry
* - Azure CLI installed and logged in ('az login')
* - Environment variables set in .env file (AZURE_ENDPOINT, AZURE_DEPLOYMENT)
*/
public class AgentSample {
public static void main(String[] args) {
// Load configuration values from the .env file
// These include the service endpoint and the deployment name of the model to use
String endpoint = ConfigLoader.getAzureEndpoint();
String deploymentName = ConfigLoader.getAzureDeployment();
// Get DefaultAzureCredential for authentication
// This uses the most appropriate authentication method based on the environment
// For local development, it will use your Azure CLI login credentials
DefaultAzureCredential credential = ConfigLoader.getDefaultCredential();
// Create a projects client to interact with Azure AI Foundry services
// The client requires an authentication credential and an endpoint
ProjectsClient client = new ProjectsClientBuilder()
.credential(credential)
.endpoint(endpoint)
.buildClient();
// Get an agent client, which provides operations for working with AI agents
// This includes creating, configuring, and running agents
AgentClient agentClient = client.getAgentClient();
// Create a new agent with specialized capabilities and instructions
// The agent is configured with a name, description, instructions, and underlying model
System.out.println("Creating agent...");
Agent agent = agentClient.createAgent(new AgentOptions()
.setName("Research Assistant") // Descriptive name for the agent
.setDescription("An agent that helps with research tasks") // Brief description of the agent's purpose
.setInstructions("You are a research assistant. Help users find information and summarize content.") // Detailed instructions for the agent's behavior
.setModel(deploymentName)); // The underlying AI model to power the agent
System.out.println("Agent created: " + agent.getName() + " (ID: " + agent.getId() + ")");
// Create a thread for the conversation with the agent
// Threads maintain conversation history and state across multiple interactions
System.out.println("Creating thread...");
AgentThread thread = agentClient.createThread();
System.out.println("Thread created: " + thread.getId());
// Create a user message
AgentMessage userMessage = new AgentMessage()
.setRole(AgentRole.USER)
.setContent("Explain what cloud computing is and list three benefits.");
// Run the agent
System.out.println("Running agent...");
AgentRun run = agentClient.createRun(thread.getId(), agent.getId(), userMessage);
System.out.println("Run created: " + run.getId());
// Wait for the run to complete
AgentRun completedRun = waitForRunCompletion(agentClient, thread.getId(), run.getId());
System.out.println("Run completed with status: " + completedRun.getStatus());
// Get messages from the thread
List<AgentMessage> messages = agentClient.getMessages(thread.getId());
// Display the assistant's response
System.out.println("\nConversation:");
for (AgentMessage message : messages) {
System.out.println(message.getRole() + ": " + message.getContent());
}
}
private static AgentRun waitForRunCompletion(AgentClient agentClient, String threadId, String runId) {
AgentRun run = agentClient.getRun(threadId, runId);
while (run.getStatus() == AgentRunStatus.QUEUED || run.getStatus() == AgentRunStatus.IN_PROGRESS) {
try {
System.out.println("Run status: " + run.getStatus() + " - waiting...");
Thread.sleep(1000); // Wait for 1 second before checking again
run = agentClient.getRun(threadId, runId);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException("Thread was interrupted", e);
}
}
return run;
}
}
const endpoint = process.env.PROJECT_ENDPOINT;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
const client = new AIProjectClient(endpoint, new DefaultAzureCredential());
// Create an Agent
const agent = await client.agents.createAgent(deployment, {
name: 'my-agent',
instructions: 'You are a helpful agent'
});
console.log(`\n==================== 🕵️ POEM AGENT ====================`);
// Create a thread and message
const thread = await client.agents.threads.create();
const prompt = 'Write me a poem about flowers';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${prompt}`);
await client.agents.messages.create(thread.id, 'user', prompt);
// Create run
let run = await client.agents.runs.create(thread.id, agent.id);
// Wait for run to complete
console.log(`\n---------------- 🚦 Run Status ----------------`);
while (['queued', 'in_progress', 'requires_action'].includes(run.status)) {
// Avoid adding a lot of messages to the console
await new Promise((resolve) => setTimeout(resolve, 1000));
run = await client.agents.runs.get(thread.id, run.id);
console.log(`Run status: ${run.status}`);
}
console.log('\n---------------- 📊 Token Usage ----------------');
console.table([run.usage]);
const messagesIterator = await client.agents.messages.list(thread.id);
const assistantMessage = await getAssistantMessage(messagesIterator);
console.log('\n---------------- 💬 Response ----------------');
printAssistantMessage(assistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up Poem Agent ----------------`);
await client.agents.deleteAgent(agent.id);
console.log(`Deleted Agent, Agent ID: ${agent.id}`);
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Tutor",
instructions: "You are a personal electronics tutor. Write and run code to answer questions.",
tools: new List<ToolDefinition> { new CodeInterpreterToolDefinition() });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"I need to solve the equation `3x + 11 = 14`. Can you help me?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
// Print the messages in the thread
WriteMessages(messages);
// Delete the thread and agent after use
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Temporary function to use a list of messages in the thread and write them to the console.
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
Console.Write(textItem.Text);
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
Reemplace YOUR-FOUNDRY-RESOURCE-NAME
y YOUR-PROJECT-NAME
por sus valores:
# Create agent
curl --request POST --url "https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1" \
-h "authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-h "content-type: application/json" \
-d '{
"model": "gpt-4o",
"name": "my-agent",
"instructions": "You are a helpful writing assistant"
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Write me a poem about flowers"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
Adición de archivos al agente
Ahora vamos a agregar una herramienta de búsqueda de archivos que nos permite realizar la recuperación de conocimientos.
- En el panel Configuración del agente, desplácese hacia abajo si es necesario para encontrar Conocimiento.
- Selecciona Agregar.
- Seleccione Archivos para cargar el archivo product_info_1.md .
- Seleccione Seleccionar archivos locales en Agregar archivos.
- Seleccione Cargar y guardar.
- Cambie las instrucciones de los agentes, como "Usted es un asistente útil y puede buscar información de los archivos cargados".
- Haga una pregunta, por ejemplo, "Hola, ¿qué productos de Contoso conoces?"
- Para agregar más archivos, seleccione ... en AgentVectorStore y, a continuación, seleccione Administrar.
Sustituya su punto de conexión por el endpoint
en este código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FileSearchTool
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
# Upload file and create vector store
file = project.agents.files.upload(file_path="./product_info_1.md", purpose=FilePurpose.AGENTS)
vector_store = project.agents.vector_stores.create_and_poll(file_ids=[file.id], name="my_vectorstore")
# Create file search tool and agent
file_search = FileSearchTool(vector_store_ids=[vector_store.id])
agent = project.agents.create_agent(
model="gpt-4o",
name="my-assistant",
instructions="You are a helpful assistant and can search information from uploaded files",
tools=file_search.definitions,
tool_resources=file_search.resources,
)
# Create thread and process user message
thread = project.agents.threads.create()
project.agents.messages.create(thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
# Handle run status
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Print thread messages
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Cleanup resources
project.agents.vector_stores.delete(vector_store.id)
project.agents.files.delete(file_id=file.id)
project.agents.delete_agent(agent.id)
package com.azure.ai.foundry.samples;
import com.azure.ai.foundry.samples.utils.ConfigLoader;
import com.azure.ai.projects.ProjectsClient;
import com.azure.ai.projects.ProjectsClientBuilder;
import com.azure.ai.projects.models.agent.Agent;
import com.azure.ai.projects.models.agent.AgentClient;
import com.azure.ai.projects.models.agent.AgentMessage;
import com.azure.ai.projects.models.agent.AgentOptions;
import com.azure.ai.projects.models.agent.AgentRole;
import com.azure.ai.projects.models.agent.AgentRun;
import com.azure.ai.projects.models.agent.AgentRunStatus;
import com.azure.ai.projects.models.agent.AgentThread;
import com.azure.ai.projects.models.agent.FileTool;
import com.azure.ai.projects.models.file.File;
import com.azure.ai.projects.models.file.FileClient;
import com.azure.identity.DefaultAzureCredential;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.List;
/**
* This sample demonstrates how to create an agent with file search capability using the Azure AI Foundry SDK.
*
* File search agents can analyze and extract information from documents, allowing users to ask
* questions about the content of those documents. This extends the capabilities of regular agents
* by giving them access to specific information contained in files.
*
* This sample shows:
* 1. How to authenticate with Azure AI Foundry using DefaultAzureCredential
* 2. How to create and upload a sample document
* 3. How to create an agent with file search capabilities
* 4. How to configure the agent with access to specific files
* 5. How to run the agent and ask questions about the document content
* 6. How to retrieve and display the agent's responses
*
* Use cases for file search agents include:
* - Document analysis and summarization
* - Question answering from technical documentation
* - Data extraction from structured files
* - Research assistance across multiple documents
*
* Prerequisites:
* - An Azure account with access to Azure AI Foundry
* - Azure CLI installed and logged in ('az login')
* - Environment variables set in .env file (AZURE_ENDPOINT, AZURE_DEPLOYMENT)
*/
public class FileSearchAgentSample {
public static void main(String[] args) {
// Load configuration values from the .env file
// These include the service endpoint and the deployment name of the model to use
String endpoint = ConfigLoader.getAzureEndpoint();
String deploymentName = ConfigLoader.getAzureDeployment();
// Get DefaultAzureCredential for authentication
// This uses the most appropriate authentication method based on the environment
// For local development, it will use your Azure CLI login credentials
DefaultAzureCredential credential = ConfigLoader.getDefaultCredential();
// Create a projects client to interact with Azure AI Foundry services
// The client requires an authentication credential and an endpoint
ProjectsClient client = new ProjectsClientBuilder()
.credential(credential)
.endpoint(endpoint)
.buildClient();
try {
// Create a sample document containing information about cloud computing
// In a real application, you would use your own existing documents
Path tempFile = createSampleDocument();
// Get a file client to handle file operations
// This is used to upload files that the agent will search through
FileClient fileClient = client.getFileClient();
// Upload the file to Azure AI Foundry
// The uploaded file will be available for the agent to search and analyze
System.out.println("Uploading file: " + tempFile);
File uploadedFile = fileClient.uploadFile(tempFile.toString());
System.out.println("File uploaded with ID: " + uploadedFile.getId());
// Get an agent client
AgentClient agentClient = client.getAgentClient();
// Create an agent with file search capability
System.out.println("Creating agent with file search capability...");
Agent agent = agentClient.createAgent(new AgentOptions()
.setName("Document Assistant")
.setDescription("An agent that helps with document searching")
.setInstructions("You are a document assistant. Help users find information in their documents.")
.setModel(deploymentName)
.addTool(new FileTool()
.addFile(uploadedFile.getId())));
System.out.println("Agent created: " + agent.getName() + " (ID: " + agent.getId() + ")");
// Create a thread for the conversation
System.out.println("Creating thread...");
AgentThread thread = agentClient.createThread();
System.out.println("Thread created: " + thread.getId());
// Create a user message
AgentMessage userMessage = new AgentMessage()
.setRole(AgentRole.USER)
.setContent("Find and list the benefits of cloud computing from my document.");
// Run the agent
System.out.println("Running agent...");
AgentRun run = agentClient.createRun(thread.getId(), agent.getId(), userMessage);
System.out.println("Run created: " + run.getId());
// Wait for the run to complete
AgentRun completedRun = waitForRunCompletion(agentClient, thread.getId(), run.getId());
System.out.println("Run completed with status: " + completedRun.getStatus());
// Get messages from the thread
List<AgentMessage> messages = agentClient.getMessages(thread.getId());
// Display the assistant's response
System.out.println("\nConversation:");
for (AgentMessage message : messages) {
System.out.println(message.getRole() + ": " + message.getContent());
}
// Clean up the temporary file
Files.deleteIfExists(tempFile);
} catch (IOException e) {
System.err.println("Error working with files: " + e.getMessage());
e.printStackTrace();
}
}
private static Path createSampleDocument() throws IOException {
String content = "# Cloud Computing Overview\n\n" +
"Cloud computing is the delivery of computing services—including servers, storage, databases, networking, software, analytics, and intelligence—over the Internet ("the cloud") to offer faster innovation, flexible resources, and economies of scale.\n\n" +
"## Benefits of Cloud Computing\n\n" +
"1. **Cost Savings**: Cloud computing eliminates the capital expense of buying hardware and software and setting up and running on-site data centers.\n\n" +
"2. **Scalability**: Cloud services can be scaled up or down based on demand, providing businesses with flexibility as their needs change.\n\n" +
"3. **Performance**: The biggest cloud computing services run on a worldwide network of secure data centers, which are regularly upgraded to the latest generation of fast and efficient computing hardware.\n\n" +
"4. **Reliability**: Cloud computing makes data backup, disaster recovery, and business continuity easier and less expensive because data can be mirrored at multiple redundant sites on the cloud provider's network.\n\n" +
"5. **Security**: Many cloud providers offer a broad set of policies, technologies, and controls that strengthen your security posture overall.";
Path tempFile = Files.createTempFile("cloud-computing-info-", ".md");
Files.writeString(tempFile, content);
return tempFile;
}
private static AgentRun waitForRunCompletion(AgentClient agentClient, String threadId, String runId) {
AgentRun run = agentClient.getRun(threadId, runId);
while (run.getStatus() == AgentRunStatus.QUEUED || run.getStatus() == AgentRunStatus.IN_PROGRESS) {
try {
System.out.println("Run status: " + run.getStatus() + " - waiting...");
Thread.sleep(1000); // Wait for 1 second before checking again
run = agentClient.getRun(threadId, runId);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException("Thread was interrupted", e);
}
}
return run;
}
}
// Upload a file named product_info_1.md
console.log(`\n==================== 🕵️ FILE AGENT ====================`);
const __dirname = path.dirname(fileURLToPath(import.meta.url));
const filePath = path.join(__dirname, '../data/product_info_1.md');
const fileStream = fs.createReadStream(filePath);
fileStream.on('data', (chunk) => {
console.log(`Read ${chunk.length} bytes of data.`);
});
const file = await client.agents.files.upload(fileStream, 'assistants', {
fileName: 'product_info_1.md'
});
console.log(`Uploaded file, ID: ${file.id}`);
const vectorStore = await client.agents.vectorStores.create({
fileIds: [file.id],
name: 'my_vectorstore'
});
console.log('\n---------------- 🗃️ Vector Store Info ----------------');
console.table([
{
'Vector Store ID': vectorStore.id,
'Usage (bytes)': vectorStore.usageBytes,
'File Count': vectorStore.fileCounts?.total ?? 'N/A'
}
]);
// Create an Agent and a FileSearch tool
const fileSearchTool = ToolUtility.createFileSearchTool([vectorStore.id]);
const fileAgent = await client.agents.createAgent(deployment, {
name: 'my-file-agent',
instructions: 'You are a helpful assistant and can search information from uploaded files',
tools: [fileSearchTool.definition],
toolResources: fileSearchTool.resources,
});
// Create a thread and message
const fileSearchThread = await client.agents.threads.create({ toolResources: fileSearchTool.resources });
const filePrompt = 'What are the steps to setup the TrailMaster X4 Tent?';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${filePrompt}`);
await client.agents.messages.create(fileSearchThread.id, 'user', filePrompt);
// Create run
let fileSearchRun = await client.agents.runs.create(fileSearchThread.id, fileAgent.id).stream();
for await (const eventMessage of fileSearchRun) {
if (eventMessage.event === DoneEvent.Done) {
console.log(`Run completed: ${eventMessage.data}`);
}
if (eventMessage.event === ErrorEvent.Error) {
console.log(`An error occurred. ${eventMessage.data}`);
}
}
const fileSearchMessagesIterator = await client.agents.messages.list(fileSearchThread.id);
const fileAssistantMessage = await getAssistantMessage(fileSearchMessagesIterator);
console.log(`\n---------------- 💬 Response ---------------- \n`);
printAssistantMessage(fileAssistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up File Agent ----------------`);
client.agents.vectorStores.delete(vectorStore.id);
client.agents.files.delete(file.id);
client.agents.deleteAgent(fileAgent.id);
console.log(`Deleted VectorStore, File, and FileAgent. FileAgent ID: ${fileAgent.id}`);
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents and vector stores
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
PersistentAgentFileInfo uploadedAgentFile = client.Files.UploadFile(
filePath: "product_info_1.md",
purpose: PersistentAgentFilePurpose.Agents);
// Create a vector store with the file and wait for it to be processed.
// If you do not specify a vector store, create_message will create a vector store with a default expiration policy of seven days after they were last active
Dictionary<string, string> fileIds = new()
{
{ uploadedAgentFile.Id, uploadedAgentFile.Filename }
};
PersistentAgentsVectorStore vectorStore = client.VectorStores.CreateVectorStore(
name: "my_vector_store");
// Add file ID to vector store.
VectorStoreFile vctFile = client.VectorStores.CreateVectorStoreFile(
vectorStoreId: vectorStore.Id,
fileId: uploadedAgentFile.Id
);
Console.WriteLine($"Added file to vector store. The id file in the vector store is {vctFile.Id}.");
FileSearchToolResource fileSearchToolResource = new FileSearchToolResource();
fileSearchToolResource.VectorStoreIds.Add(vectorStore.Id);
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Retrieval",
instructions: "You are a helpful agent that can help fetch data from files you know about.",
tools: new List<ToolDefinition> { new FileSearchToolDefinition() },
toolResources: new ToolResources() { FileSearch = fileSearchToolResource });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"Can you give me information on how to mount the product?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
// This is a blocking call, so it will wait until the run is completed
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
// Create a list of messages in the thread and write them to the console.
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
WriteMessages(messages, fileIds);
// Delete the thread and agent after use
client.VectorStores.DeleteVectorStore(vectorStore.Id);
client.Files.DeleteFile(uploadedAgentFile.Id);
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Helper method to write messages to the console
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages, Dictionary<string, string> fileIds)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
if (threadMessage.Role == MessageRole.Agent && textItem.Annotations.Count > 0)
{
string strMessage = textItem.Text;
foreach (MessageTextAnnotation annotation in textItem.Annotations)
{
if (annotation is MessageTextFilePathAnnotation pathAnnotation)
{
strMessage = replaceReferences(fileIds, pathAnnotation.FileId, pathAnnotation.Text, strMessage);
}
else if (annotation is MessageTextFileCitationAnnotation citationAnnotation)
{
strMessage = replaceReferences(fileIds, citationAnnotation.FileId, citationAnnotation.Text, strMessage);
}
}
Console.Write(strMessage);
}
else
{
Console.Write(textItem.Text);
}
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
// Helper method to replace file references in the text
static string replaceReferences(Dictionary<string, string> fileIds, string fileID, string placeholder, string text)
{
if (fileIds.TryGetValue(fileID, out string replacement))
return text.Replace(placeholder, $" [{replacement}]");
else
return text.Replace(placeholder, $" [{fileID}]");
}
Reemplace YOUR-FOUNDRY-RESOURCE-NAME
y YOUR-PROJECT-NAME
por sus valores:
#Upload the file
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/files?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-f purpose="assistant" \
-f file="@product_info_1.md" #File object (not file name) to be uploaded.
#Lets say file ID created is assistant-123456789. Use this in the next step
# create vector store
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/vector_stores?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"name": "my_vectorstore",
"file_ids": ["assistant-123456789"]
}'
#Lets say Vector Store ID created is vs_123456789. Use this in the next step
# Create Agent for File Search
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"model": "gpt-4o",
"name": "my-assistant",
"instructions": "You are a helpful assistant and can search information from uploaded files",
"tools": [{"type": "file_search"}],
"tool_resources": {"file_search": {"vector_store_ids": ["vs_123456789"]}}
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Hello, what Contoso products do you know?"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
Limpieza de recursos
Si ya no los necesita, elimine el grupo de recursos asociado al proyecto.
En el portal de Azure AI Foundry, seleccione el nombre del proyecto en la esquina superior derecha. A continuación, seleccione el vínculo del grupo de recursos para abrirlo en Azure Portal. Seleccione el grupo de recursos y, a continuación, seleccione Eliminar. Confirme que desea eliminar el grupo de recursos.
Contenido relacionado
Introducción a la biblioteca cliente de Azure AI Foundry