Compartir a través de


Inicio rápido: Implementación de un clúster de AKS de Azure Linux con OS Guard (versión preliminar) mediante la CLI de Azure

Implementación en Azure

Introducción a Azure Linux con OS Guard mediante la CLI de Azure para implementar una instancia de Azure Linux con host de contenedor de OS Guard para el clúster de AKS. Después de instalar los requisitos previos, instalará la extensión de la CLI de Azure aks-preview, registrará la marca de característica AzureLinuxOSGuardPreview, creará un grupo de recursos, creará un clúster de AKS, se conectará al clúster y ejecutará una aplicación de varios contenedores de ejemplo en el clúster.

Consideraciones y limitaciones

Antes de empezar, revise las siguientes consideraciones y limitaciones para Azure Linux con OS Guard (versión preliminar):

Prerrequisitos

Instalar la extensión aks-preview de la CLI de Azure

Importante

Las características en versión preliminar de AKS están disponibles a elección del usuario y en régimen de autoservicio. Las versiones preliminares se proporcionan "tal cual" y "como están disponibles", y están excluidas de los Acuerdos de nivel de servicio y garantía limitada. Las versiones preliminares de AKS cuentan con soporte parcial por parte del servicio al cliente en la medida de lo posible. Por lo tanto, estas características no están diseñadas para su uso en producción. Para más información, consulte los siguientes artículos de soporte:

Ejecute el siguiente comando para instalar la extensión de versión preliminar de AKS:

az extension add --name aks-preview

Ejecute el siguiente comando para actualizar a la versión más reciente de la extensión publicada:

az extension update --name aks-preview

Registra la característica de bandera AzureLinuxOSGuardPreview

Registre la marca de la característica AzureLinuxOSGuardPreview con el comando az feature register, como se muestra en el siguiente ejemplo:

az feature register --namespace "Microsoft.ContainerService" --name "AzureLinuxOSGuardPreview"

Tarda unos minutos en que el estado muestre Registrado. Para comprobar el estado de registro se usa el comandoaz feature show:

az feature show --namespace "Microsoft.ContainerService" --name "AzureLinuxOSGuardPreview"

Cuando aparezca el estado Registrado, actualice el registro del proveedor de recursos Microsoft.ContainerService mediante el comando az provider register:

az provider register --namespace "Microsoft.ContainerService"

Creación de un grupo de recursos

Un grupo de recursos de Azure es un grupo lógico en el que se implementan y administran los recursos de Azure. Al crear un grupo de recursos, es necesario especificar una ubicación. Esta ubicación es:

  • Ubicación de almacenamiento de los metadatos del grupo de recursos.
  • El lugar en el que se ejecutan los recursos en Azure si no se especifica otra región al crearlos.

Cree un grupo de recursos con el comando az group create.

export RANDOM_ID="$(openssl rand -hex 3)"
export MY_RESOURCE_GROUP_NAME="myAzureLinuxOSGuardResourceGroup$RANDOM_ID"
export REGION="westeurope"

az group create --name $MY_RESOURCE_GROUP_NAME --location $REGION

Resultados:

{
  "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroups/$MY_RESOURCE_GROUP_NAMExxxxxx",
  "location": "$REGION",
  "managedBy": null,
  "name": "$MY_RESOURCE_GROUP_NAME",
  "properties": {
    "provisioningState": "Succeeded"
  },
  "tags": null,
  "type": "Microsoft.Resources/resourceGroups"
}

Creación de un clúster de Azure Linux con OS Guard

Cree un clúster de AKS mediante el az aks create comando con el --os-sku parámetro para aprovisionar el clúster de AKS con una imagen de Azure Linux con OS Guard.

export MY_AZ_CLUSTER_NAME="myAzureLinuxOSGuardCluster$RANDOM_ID"

az aks create --name $MY_AZ_CLUSTER_NAME --resource-group $MY_RESOURCE_GROUP_NAME --os-sku AzureLinuxOSGuard --node-osdisk-type Managed --enable-fips-image --enable-secure-boot --enable-vtpm 

Transcurridos unos minutos, el comando se completa y devuelve información en formato JSON sobre el clúster.

Conectarse al clúster

Para administrar un clúster de Kubernetes, use el cliente de línea de comandos de Kubernetes, kubectl. kubectl ya está instalado si usa Azure Cloud Shell. Para instalar kubectl localmente, use el comando az aks install-cli.

  1. Para configurar kubectl para conectarse a su clúster de Kubernetes, use el comando az aks get-credentials. Con este comando se descargan las credenciales y se configura la CLI de Kubernetes para usarlas.

    az aks get-credentials --resource-group $MY_RESOURCE_GROUP_NAME --name $MY_AZ_CLUSTER_NAME
    
  2. Compruebe la conexión al clúster con el comando kubectl get. Este comando devuelve una lista de los nodos del clúster.

    kubectl get nodes
    

Implementación de la aplicación

Para implementar la aplicación, se usa un archivo de manifiesto para crear todos los objetos necesarios para ejecutar la aplicación AKS Store. Un archivo de manifiesto de Kubernetes define el estado deseado de un clúster, como las imágenes de contenedor que se van a ejecutar. El manifiesto incluye las siguientes implementaciones y servicios de Kubernetes:

Captura de pantalla de la arquitectura de ejemplo de Azure Store.

  • Tienda virtual: aplicación web para que los clientes vean los productos y realicen los pedidos.
  • Servicio de producto: muestra información del producto.
  • Servicio de pedidos: realiza pedidos.
  • Rabbit MQ: cola de mensajes utilizada para gestionar pedidos.

Nota:

No se recomienda ejecutar contenedores con estado, como Rabbit MQ, sin almacenamiento persistente para producción. Estos se usan aquí para simplificar, pero se recomienda usar servicios administrados, como Azure Cosmos DB o Azure Service Bus.

  1. Cree un archivo denominado aks-store-quickstart.yaml y cópielo en el siguiente manifiesto:

    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: rabbitmq
    spec:
      serviceName: rabbitmq
      replicas: 1
      selector:
        matchLabels:
          app: rabbitmq
      template:
        metadata:
          labels:
            app: rabbitmq
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: rabbitmq
            image: mcr.microsoft.com/mirror/docker/library/rabbitmq:3.10-management-alpine
            ports:
            - containerPort: 5672
              name: rabbitmq-amqp
            - containerPort: 15672
              name: rabbitmq-http
            env:
            - name: RABBITMQ_DEFAULT_USER
              value: "username"
            - name: RABBITMQ_DEFAULT_PASS
              value: "password"
            resources:
              requests:
                cpu: 10m
                memory: 128Mi
              limits:
                cpu: 250m
                memory: 256Mi
            volumeMounts:
            - name: rabbitmq-enabled-plugins
              mountPath: /etc/rabbitmq/enabled_plugins
              subPath: enabled_plugins
          volumes:
          - name: rabbitmq-enabled-plugins
            configMap:
              name: rabbitmq-enabled-plugins
              items:
              - key: rabbitmq_enabled_plugins
                path: enabled_plugins
    ---
    apiVersion: v1
    data:
      rabbitmq_enabled_plugins: |
        [rabbitmq_management,rabbitmq_prometheus,rabbitmq_amqp1_0].
    kind: ConfigMap
    metadata:
      name: rabbitmq-enabled-plugins            
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: rabbitmq
    spec:
      selector:
        app: rabbitmq
      ports:
        - name: rabbitmq-amqp
          port: 5672
          targetPort: 5672
        - name: rabbitmq-http
          port: 15672
          targetPort: 15672
      type: ClusterIP
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: order-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: order-service
      template:
        metadata:
          labels:
            app: order-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: order-service
            image: ghcr.io/azure-samples/aks-store-demo/order-service:latest
            ports:
            - containerPort: 3000
            env:
            - name: ORDER_QUEUE_HOSTNAME
              value: "rabbitmq"
            - name: ORDER_QUEUE_PORT
              value: "5672"
            - name: ORDER_QUEUE_USERNAME
              value: "username"
            - name: ORDER_QUEUE_PASSWORD
              value: "password"
            - name: ORDER_QUEUE_NAME
              value: "orders"
            - name: FASTIFY_ADDRESS
              value: "0.0.0.0"
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi
            startupProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 20
              periodSeconds: 10
            readinessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
          initContainers:
          - name: wait-for-rabbitmq
            image: busybox
            command: ['sh', '-c', 'until nc -zv rabbitmq 5672; do echo waiting for rabbitmq; sleep 2; done;']
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi    
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: order-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3000
        targetPort: 3000
      selector:
        app: order-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: product-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: product-service
      template:
        metadata:
          labels:
            app: product-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: product-service
            image: ghcr.io/azure-samples/aks-store-demo/product-service:latest
            ports:
            - containerPort: 3002
            env: 
            - name: AI_SERVICE_URL
              value: "http://ai-service:5001/"
            resources:
              requests:
                cpu: 1m
                memory: 1Mi
              limits:
                cpu: 2m
                memory: 20Mi
            readinessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: product-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3002
        targetPort: 3002
      selector:
        app: product-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: store-front
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: store-front
      template:
        metadata:
          labels:
            app: store-front
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: store-front
            image: ghcr.io/azure-samples/aks-store-demo/store-front:latest
            ports:
            - containerPort: 8080
              name: store-front
            env: 
            - name: VUE_APP_ORDER_SERVICE_URL
              value: "http://order-service:3000/"
            - name: VUE_APP_PRODUCT_SERVICE_URL
              value: "http://product-service:3002/"
            resources:
              requests:
                cpu: 1m
                memory: 200Mi
              limits:
                cpu: 1000m
                memory: 512Mi
            startupProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 5
              periodSeconds: 5
            readinessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 3
            livenessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: store-front
    spec:
      ports:
      - port: 80
        targetPort: 8080
      selector:
        app: store-front
      type: LoadBalancer
    

    Si crea y guarda el archivo YAML localmente, para cargar el archivo de manifiesto en el directorio predeterminado de CloudShell, seleccione el botón Cargar y descargar archivos y elija el archivo en el sistema de archivos local.

  2. Implemente la aplicación mediante el comando kubectl apply y especifique el nombre del manifiesto de YAML.

    kubectl apply -f aks-store-quickstart.yaml
    

Prueba de la aplicación

Puede validar que la aplicación se está ejecutando visitando la dirección IP pública o la dirección URL de la aplicación.

Obtenga la dirección URL de la aplicación mediante los siguientes comandos:

runtime="5 minutes"
endtime=$(date -ud "$runtime" +%s)
while [[ $(date -u +%s) -le $endtime ]]
do
   STATUS=$(kubectl get pods -l app=store-front -o 'jsonpath={..status.conditions[?(@.type=="Ready")].status}')
   echo $STATUS
   if [ "$STATUS" == 'True' ]
   then
      export IP_ADDRESS=$(kubectl get service store-front --output 'jsonpath={..status.loadBalancer.ingress[0].ip}')
      echo "Service IP Address: $IP_ADDRESS"
      break
   else
      sleep 10
   fi
done
curl $IP_ADDRESS

Resultados:

<!doctype html>
<html lang="">
   <head>
      <meta charset="utf-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width,initial-scale=1">
      <link rel="icon" href="/favicon.ico">
      <title>store-front</title>
      <script defer="defer" src="/js/chunk-vendors.df69ae47.js"></script>
      <script defer="defer" src="/js/app.7e8cfbb2.js"></script>
      <link href="/css/app.a5dc49f6.css" rel="stylesheet">
   </head>
   <body>
      <div id="app"></div>
   </body>
</html>
echo "You can now visit your web server at $IP_ADDRESS"

Eliminación del clúster

Si ya no los necesita, puede limpiar recursos innecesarios para evitar cargos de Azure. Puede quitar el grupo de recursos, el servicio de contenedor y todos los recursos relacionados mediante el comando az group delete.

Pasos siguientes

En este inicio rápido, ha implementado una instancia de Azure Linux con un clúster de OS Guard. Para más información sobre Azure Linux con OS Guard y recorrer un ejemplo completo de implementación y administración de clústeres, continúe con el tutorial azure Linux con OS Guard.