Nota:
El acceso a esta página requiere autorización. Puede intentar iniciar sesión o cambiar directorios.
El acceso a esta página requiere autorización. Puede intentar cambiar los directorios.
Devuelve una nueva matriz que contiene la intersección de elementos en col1 y col2, sin duplicados.
Syntax
from pyspark.sql import functions as sf
sf.array_intersect(col1, col2)
Parámetros
| Parámetro | Tipo | Description |
|---|---|---|
col1 |
pyspark.sql.Column o str |
Nombre de la columna que contiene la primera matriz. |
col2 |
pyspark.sql.Column o str |
Nombre de columna que contiene la segunda matriz. |
Devoluciones
pyspark.sql.Column: una nueva matriz que contiene la intersección de elementos en col1 y col2.
Examples
Ejemplo 1: Uso básico
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])])
df.select(sf.sort_array(sf.array_intersect(df.c1, df.c2))).show()
+-----------------------------------------+
|sort_array(array_intersect(c1, c2), true)|
+-----------------------------------------+
| [a, c]|
+-----------------------------------------+
Ejemplo 2: Intersección sin elementos comunes
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["d", "e", "f"])])
df.select(sf.array_intersect(df.c1, df.c2)).show()
+-----------------------+
|array_intersect(c1, c2)|
+-----------------------+
| []|
+-----------------------+
Ejemplo 3: Intersección con todos los elementos comunes
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", "c"], c2=["a", "b", "c"])])
df.select(sf.sort_array(sf.array_intersect(df.c1, df.c2))).show()
+-----------------------------------------+
|sort_array(array_intersect(c1, c2), true)|
+-----------------------------------------+
| [a, b, c]|
+-----------------------------------------+
Ejemplo 4: Intersección con valores NULL
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", None], c2=["a", None, "c"])])
df.select(sf.sort_array(sf.array_intersect(df.c1, df.c2))).show()
+-----------------------------------------+
|sort_array(array_intersect(c1, c2), true)|
+-----------------------------------------+
| [NULL, a]|
+-----------------------------------------+
Ejemplo 5: Intersección con matrices vacías
from pyspark.sql import Row, functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
data = [Row(c1=[], c2=["a", "b", "c"])]
schema = StructType([
StructField("c1", ArrayType(StringType()), True),
StructField("c2", ArrayType(StringType()), True)
])
df = spark.createDataFrame(data, schema)
df.select(sf.array_intersect(df.c1, df.c2)).show()
+-----------------------+
|array_intersect(c1, c2)|
+-----------------------+
| []|
+-----------------------+