Compartir a través de


ConversionsExtensionsCatalog.MapValue Método

Definición

Sobrecargas

MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves para usarlas desde donde lookupMapkeyColumn especifica las claves y el valueColumn valor correspondiente.

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves que se van a usar desde keyValuePairs.

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves que se van a usar desde keyValuePairs.

MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves para usarlas desde donde lookupMapkeyColumn especifica las claves y el valueColumn valor correspondiente.

public static Microsoft.ML.Transforms.ValueMappingEstimator MapValue (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, Microsoft.ML.IDataView lookupMap, Microsoft.ML.DataViewSchema.Column keyColumn, Microsoft.ML.DataViewSchema.Column valueColumn, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * Microsoft.ML.IDataView * Microsoft.ML.DataViewSchema.Column * Microsoft.ML.DataViewSchema.Column * string -> Microsoft.ML.Transforms.ValueMappingEstimator
<Extension()>
Public Function MapValue (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, lookupMap As IDataView, keyColumn As DataViewSchema.Column, valueColumn As DataViewSchema.Column, Optional inputColumnName As String = Nothing) As ValueMappingEstimator

Parámetros

catalog
TransformsCatalog.ConversionTransforms

Catálogo de la transformación de conversión

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. Los tipos de datos pueden ser primitivos o vectores de tipos numéricos, text, booleanos, DateTimeDateTimeOffset o DataViewRowId .

lookupMap
IDataView

Instancia de IDataView que contiene las keyColumn columnas y valueColumn .

keyColumn
DataViewSchema.Column

Columna de clave en lookupMap.

valueColumn
DataViewSchema.Column

Columna de valor en lookupMap.

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. Los tipos de datos pueden ser primitivos o vectores de tipos numéricos, text, booleanos, DateTimeDateTimeOffset o DataViewRowId .

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValueIdvLookup
    {
        /// This example demonstrates the use of MapValue by mapping floats to
        /// strings, looking up the mapping in an IDataView. This is useful to map
        /// types to a grouping. 
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Price = 3.14f },
                new DataPoint() { Price = 2000f },
                new DataPoint() { Price = 1.19f },
                new DataPoint() { Price = 2.17f },
                new DataPoint() { Price = 33.784f },

            };

            // Convert to IDataView
            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Create the lookup map data IEnumerable.   
            var lookupData = new[] {
                new LookupMap { Value = 3.14f, Category = "Low" },
                new LookupMap { Value = 1.19f , Category = "Low" },
                new LookupMap { Value = 2.17f , Category = "Low" },
                new LookupMap { Value = 33.784f, Category = "Medium" },
                new LookupMap { Value = 2000f, Category = "High"}

            };

            // Convert to IDataView
            var lookupIdvMap = mlContext.Data.LoadFromEnumerable(lookupData);

            // Constructs the ValueMappingEstimator making the ML.NET pipeline
            var pipeline = mlContext.Transforms.Conversion.MapValue("PriceCategory",
                lookupIdvMap, lookupIdvMap.Schema["Value"], lookupIdvMap.Schema[
                    "Category"], "Price");

            // Fits the ValueMappingEstimator and transforms the data converting the
            // Price to PriceCategory.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine($" Price   PriceCategory");
            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Price}\t\t" +
                $"{featureRow.PriceCategory}");

            // TransformedData obtained post-transformation.
            //
            // Price        PriceCategory
            // 3.14            Low
            // 2000            High
            // 1.19            Low
            // 2.17            Low
            // 33.784          Medium
        }

        // Type for the IDataView that will be serving as the map
        private class LookupMap
        {
            public float Value { get; set; }
            public string Category { get; set; }
        }

        private class DataPoint
        {
            public float Price { get; set; }
        }

        private class TransformedData : DataPoint
        {
            public string PriceCategory { get; set; }
        }
    }
}

Se aplica a

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves que se van a usar desde keyValuePairs.

public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType[]>> keyValuePairs, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType[]>> * string -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType())), Optional inputColumnName As String = Nothing) As ValueMappingEstimator(Of TInputType, TOutputType)

Parámetros de tipo

TInputType

El tipo de clave.

TOutputType

Tipo de valor.

Parámetros

catalog
TransformsCatalog.ConversionTransforms

Catálogo de la transformación de conversión

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. Los tipos de datos pueden ser primitivos o vectores de tipos numéricos, text, booleanos, DateTimeDateTimeOffset o DataViewRowId , como se especifica en TOutputType.

keyValuePairs
IEnumerable<KeyValuePair<TInputType,TOutputType[]>>

Especifica la asignación que se realizará. Las claves se asignarán a los valores especificados en .keyValuePairs

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. Los tipos de datos pueden ser primitivos o vectores de tipos numéricos, text, booleanos, DateTimeDateTimeOffset o DataViewRowId , como se especifica en TInputType.

Devoluciones

ValueMappingEstimator<TInputType,TOutputType>

Ejemplos

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValueToArray
    {
        /// This example demonstrates the use of MapValue by mapping strings to
        /// array values, which allows for mapping data to numeric arrays. This
        /// functionality is useful when the generated column will serve as the
        /// Features column for a trainer. Most of the trainers take a numeric
        /// vector, as the Features column. In this example, we are mapping the
        /// Timeframe data to arbitrary integer arrays.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = "0-4yrs" },
                new DataPoint() { Timeframe = "6-11yrs" },
                new DataPoint() { Timeframe = "12-25yrs" },
                new DataPoint() { Timeframe = "0-5yrs" },
                new DataPoint() { Timeframe = "12-25yrs" },
                new DataPoint() { Timeframe = "25+yrs" },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Creating a list of key-value pairs to indicate the mapping between
            // the DataPoint values, and the arrays they should map to. 
            var timeframeMap = new Dictionary<string, int[]>();
            timeframeMap["0-4yrs"] = new int[] { 0, 5, 300 };
            timeframeMap["0-5yrs"] = new int[] { 0, 5, 300 };
            timeframeMap["6-11yrs"] = new int[] { 6, 11, 300 };
            timeframeMap["12-25yrs"] = new int[] { 12, 50, 300 };
            timeframeMap["25+yrs"] = new int[] { 12, 50, 300 };

            // Constructs the ValueMappingEstimator making the ML.NET pipeline.
            var pipeline = mlContext.Transforms.Conversion.MapValue("Features",
                timeframeMap, "Timeframe");

            // Fits the ValueMappingEstimator and transforms the data adding the
            // Features column.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            IEnumerable<TransformedData> featuresColumn = mlContext.Data
                .CreateEnumerable<TransformedData>(transformedData, reuseRowObject:
                false);

            Console.WriteLine($"Timeframe     Features");
            foreach (var featureRow in featuresColumn)
                Console.WriteLine($"{featureRow.Timeframe}\t\t " +
                $"{string.Join(",", featureRow.Features)}");

            // Timeframe      Features
            // 0-4yrs       0, 5, 300
            // 6-11yrs      6, 11, 300
            // 12-25yrs     12, 50, 300
            // 0-5yrs       0, 5, 300
            // 12-25yrs     12, 50,300
            // 25+yrs       12, 50, 300
        }

        public class DataPoint
        {
            public string Timeframe { get; set; }
        }

        public class TransformedData : DataPoint
        {
            public int[] Features { get; set; }
        }
    }
}

Se aplica a

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean)

Cree un ValueMappingEstimatorobjeto , que convierte los tipos de valor en claves, cargando las claves que se van a usar desde keyValuePairs.

public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType>> keyValuePairs, string inputColumnName = default, bool treatValuesAsKeyType = false);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType>> * string * bool -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType)), Optional inputColumnName As String = Nothing, Optional treatValuesAsKeyType As Boolean = false) As ValueMappingEstimator(Of TInputType, TOutputType)

Parámetros de tipo

TInputType

El tipo de clave.

TOutputType

Tipo de valor.

Parámetros

catalog
TransformsCatalog.ConversionTransforms

Catálogo de la transformación de conversión

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. Los tipos de datos de salida pueden ser primitivos o vectores de tipos numéricos, text, booleanosDateTimeDateTimeOffset, o DataViewRowId .

keyValuePairs
IEnumerable<KeyValuePair<TInputType,TOutputType>>

Especifica la asignación que se realizará. Las claves se asignarán a los valores especificados en .keyValuePairs

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece en null, el valor de outputColumnName se usará como origen. Los tipos de datos de entrada pueden ser primitivos o vectores de tipos numéricos, text, booleanosDateTimeDateTimeOffset, o DataViewRowId .

treatValuesAsKeyType
Boolean

Si se deben tratar los valores como una clave.

Devoluciones

ValueMappingEstimator<TInputType,TOutputType>

Instancia de ValueMappingEstimator

Ejemplos

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValue
    {
        /// This example demonstrates the use of the ValueMappingEstimator by 
        /// mapping strings to other string values, or floats to strings. This is
        /// useful to map types to a category. 
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = "0-4yrs" , Score = 1 },
                new DataPoint() { Timeframe = "6-11yrs" , Score = 2 },
                new DataPoint() { Timeframe = "12-25yrs" , Score = 3 },
                new DataPoint() { Timeframe = "0-5yrs" , Score = 4 },
                new DataPoint() { Timeframe = "12-25yrs" , Score = 5 },
                new DataPoint() { Timeframe = "25+yrs" , Score = 5 },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Construct the mapping to other strings for the Timeframe column.  
            var timeframeMap = new Dictionary<string, string>();
            timeframeMap["0-4yrs"] = "Short";
            timeframeMap["0-5yrs"] = "Short";
            timeframeMap["6-11yrs"] = "Medium";
            timeframeMap["12-25yrs"] = "Long";
            timeframeMap["25+yrs"] = "Long";

            // Construct the mapping of strings to keys(uints) for the Timeframe
            // column. 
            var timeframeKeyMap = new Dictionary<string, uint>();
            timeframeKeyMap["0-4yrs"] = 1;
            timeframeKeyMap["0-5yrs"] = 1;
            timeframeKeyMap["6-11yrs"] = 2;
            timeframeKeyMap["12-25yrs"] = 3;
            timeframeKeyMap["25+yrs"] = 3;

            // Construct the mapping of ints to strings for the Score column. 
            var scoreMap = new Dictionary<int, string>();
            scoreMap[1] = "Low";
            scoreMap[2] = "Low";
            scoreMap[3] = "Average";
            scoreMap[4] = "High";
            scoreMap[5] = "High";

            // Constructs the ML.net pipeline
            var pipeline = mlContext.Transforms.Conversion.MapValue(
                "TimeframeCategory", timeframeMap, "Timeframe").Append(mlContext.
                Transforms.Conversion.MapValue("ScoreCategory", scoreMap, "Score"))
                // on the MapValue below, the treatValuesAsKeyType is set to true.
                // The type of the Label column will be a KeyDataViewType type, 
                // and it can be used as input for trainers performing multiclass
                // classification.
                .Append(mlContext.Transforms.Conversion.MapValue("Label",
                timeframeKeyMap, "Timeframe", treatValuesAsKeyType: true));

            // Fits the pipeline to the data.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            // This will contain the newly created columns.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine(" Timeframe   TimeframeCategory   Label    Score   " +
                "ScoreCategory");

            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Timeframe}\t\t" +
                    $"{featureRow.TimeframeCategory}\t\t\t{featureRow.Label}\t\t" +
                    $"{featureRow.Score}\t{featureRow.ScoreCategory}");

            // TransformedData obtained post-transformation.
            //
            //  Timeframe   TimeframeCategory   Label    Score   ScoreCategory
            // 0-4yrs         Short              1       1       Low
            // 6-11yrs        Medium             2       2       Low
            // 12-25yrs       Long               3       3       Average
            // 0-5yrs         Short              1       4       High
            // 12-25yrs       Long               3       5       High
            // 25+yrs         Long               3       5       High
        }

        private class DataPoint
        {
            public string Timeframe { get; set; }
            public int Score { get; set; }
        }

        private class TransformedData : DataPoint
        {
            public string TimeframeCategory { get; set; }
            public string ScoreCategory { get; set; }
            public uint Label { get; set; }
        }
    }
}

Se aplica a