Compartir a través de


TextCatalog.TokenizeIntoCharactersAsKeys Método

Definición

Cree un TokenizingByCharactersEstimator, que tokeniza dividiendo el texto en secuencias de caracteres mediante una ventana deslizante.

public static Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator TokenizeIntoCharactersAsKeys (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, bool useMarkerCharacters = true);
static member TokenizeIntoCharactersAsKeys : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * bool -> Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator
<Extension()>
Public Function TokenizeIntoCharactersAsKeys (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional useMarkerCharacters As Boolean = true) As TokenizingByCharactersEstimator

Parámetros

catalog
TransformsCatalog.TextTransforms

Catálogo de la transformación relacionada con el texto.

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. El tipo de datos de esta columna será un vector de tamaño variable de claves.

inputColumnName
String

Nombre de la columna que se va a transformar. Si se establece nullen , el valor de outputColumnName se usará como origen. Este estimador funciona sobre el tipo de datos de texto.

useMarkerCharacters
Boolean

Para poder distinguir los tokens, por ejemplo, con fines de depuración, puede optar por anteponer un carácter de marcador, 0x02, al principio y anexar otro carácter de marcador, 0x03, al final del vector de salida de caracteres.

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class TokenizeIntoCharactersAsKeys
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create an empty list as the dataset. The
            // 'TokenizeIntoCharactersAsKeys' does not require training data as
            // the estimator ('TokenizingByCharactersEstimator') created by
            // 'TokenizeIntoCharactersAsKeys' API is not a trainable estimator.
            // The empty list is only needed to pass input schema to the pipeline.
            var emptySamples = new List<TextData>();

            // Convert sample list to an empty IDataView.
            var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);

            // A pipeline for converting text into vector of characters.
            // The 'TokenizeIntoCharactersAsKeys' produces result as key type.
            // 'MapKeyToValue' is need to map keys back to their original values.
            var textPipeline = mlContext.Transforms.Text
                .TokenizeIntoCharactersAsKeys("CharTokens", "Text",
                    useMarkerCharacters: false)
                .Append(mlContext.Transforms.Conversion.MapKeyToValue(
                    "CharTokens"));

            // Fit to data.
            var textTransformer = textPipeline.Fit(emptyDataView);

            // Create the prediction engine to get the character vector from the
            // input text/string.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Call the prediction API to convert the text into characters.
            var data = new TextData()
            {
                Text = "ML.NET's " +
                "TokenizeIntoCharactersAsKeys API splits text/string into " +
                "characters."
            };

            var prediction = predictionEngine.Predict(data);

            // Print the length of the character vector.
            Console.WriteLine($"Number of tokens: {prediction.CharTokens.Length}");

            // Print the character vector.
            Console.WriteLine("\nCharacter Tokens: " + string.Join(",", prediction
                .CharTokens));

            //  Expected output:
            //   Number of tokens: 77
            //   Character Tokens: M,L,.,N,E,T,',s,<?>,T,o,k,e,n,i,z,e,I,n,t,o,C,h,a,r,a,c,t,e,r,s,A,s,K,e,y,s,<?>,A,P,I,<?>,
            //                     s,p,l,i,t,s,<?>,t,e,x,t,/,s,t,r,i,n,g,<?>,i,n,t,o,<?>,c,h,a,r,a,c,t,e,r,s,.
            //
            // <?>: is a unicode control character used instead of spaces ('\u2400').
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public string[] CharTokens { get; set; }
        }
    }
}

Se aplica a