Compartir a través de


TimeSeriesCatalog.DetectAnomalyBySrCnn Método

Definición

Cree SrCnnAnomalyEstimator, que detecta anomalías en las series de tiempo mediante el algoritmo SRCNN.

public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averagingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averageingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averagingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averageingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator

Parámetros

catalog
TransformsCatalog

Catálogo de la transformación.

outputColumnName
String

Nombre de la columna resultante de la transformación de inputColumnName. Los datos de columna son un vector de Double. El vector contiene 3 elementos: alert (1 significa anomalía mientras 0 significa normal), puntuación sin procesar y magnitud de residual de spectual.

inputColumnName
String

Nombre de columna que se va a transformar. Los datos de columna deben ser Single.

windowSize
Int32

Tamaño de la ventana deslizante para calcular valores residuales espectrales.

backAddWindowSize
Int32

Número de puntos que se van a agregar de nuevo a la ventana de entrenamiento. No más que windowSize, normalmente mantiene el valor predeterminado.

lookaheadWindowSize
Int32

Número de puntos perviosos utilizados en la predicción. No más que windowSize, normalmente mantiene el valor predeterminado.

averagingWindowSizeaverageingWindowSize
Int32

Tamaño de la ventana deslizante para generar un mapa de saliencia para la serie. No más que windowSize, normalmente mantiene el valor predeterminado.

judgementWindowSize
Int32

Tamaño de la ventana deslizante para calcular la puntuación de anomalías para cada punto de datos. No más que windowSize.

threshold
Double

El umbral para determinar la anomalía, la puntuación mayor que el umbral se considera anomalía. Debe estar en (0,1)

Devoluciones

Ejemplos

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class DetectAnomalyBySrCnn
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with an anomaly
            var data = new List<TimeSeriesData>();
            for (int index = 0; index < 20; index++)
            {
                data.Add(new TimeSeriesData(5));
            }
            data.Add(new TimeSeriesData(10));
            for (int index = 0; index < 5; index++)
            {
                data.Add(new TimeSeriesData(5));
            }

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup the estimator arguments
            string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed model.
            ITransformer model = ml.Transforms.DetectAnomalyBySrCnn(
                outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(
                dataView);

            // Create a time series prediction engine from the model.
            var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                SrCnnAnomalyDetection>(ml);

            Console.WriteLine($"{outputColumnName} column obtained post-" +
                $"transformation.");

            Console.WriteLine("Data\tAlert\tScore\tMag");

            // Prediction column obtained post-transformation.
            // Data	Alert	Score	Mag

            // Create non-anomalous data and check for anomaly.
            for (int index = 0; index < 20; index++)
            {
                // Anomaly detection.
                PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
            }

            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18

            // Anomaly.
            PrintPrediction(10, engine.Predict(new TimeSeriesData(10)));

            //10	1	0.47	0.93    <-- alert is on, predicted anomaly

            // Checkpoint the model.
            var modelPath = "temp.zip";
            engine.CheckPoint(ml, modelPath);

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = ml.Model.Load(file, out DataViewSchema schema);

            for (int index = 0; index < 5; index++)
            {
                // Anomaly detection.
                PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
            }

            //5   0   0.31    0.50
            //5   0   0.05    0.30
            //5   0   0.01    0.23
            //5   0   0.00    0.21
            //5   0   0.01    0.25
        }

        private static void PrintPrediction(float value, SrCnnAnomalyDetection
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value, prediction
            .Prediction[0], prediction.Prediction[1], prediction.Prediction[2]);

        private class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        private class SrCnnAnomalyDetection
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

Se aplica a