TransformExtensionsCatalog.CopyColumns Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Cree un ColumnCopyingEstimatorobjeto , que copia los datos de la columna especificada en inputColumnName
en una nueva columna: outputColumnName
.
public static Microsoft.ML.Transforms.ColumnCopyingEstimator CopyColumns (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName);
static member CopyColumns : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.ColumnCopyingEstimator
<Extension()>
Public Function CopyColumns (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String) As ColumnCopyingEstimator
Parámetros
- catalog
- TransformsCatalog
Catálogo de la transformación.
- outputColumnName
- String
Nombre de la columna resultante de la transformación de inputColumnName
.
El tipo de datos de esta columna será el mismo que el de la columna de entrada.
- inputColumnName
- String
Nombre de la columna de la que se van a copiar los datos. Este estimador opera sobre cualquier tipo de datos.
Devoluciones
Ejemplos
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class CopyColumns
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<InputData>()
{
new InputData(){ ImageId = 1, Features = new [] { 1.0f, 1.0f,
1.0f } },
new InputData(){ ImageId = 2, Features = new [] { 2.0f, 2.0f,
2.0f } },
new InputData(){ ImageId = 3, Features = new [] { 3.0f, 3.0f,
3.0f } },
new InputData(){ ImageId = 4, Features = new [] { 4.0f, 4.0f,
4.0f } },
new InputData(){ ImageId = 5, Features = new [] { 5.0f, 5.0f,
5.0f } },
new InputData(){ ImageId = 6, Features = new [] { 6.0f, 6.0f,
6.0f } },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// CopyColumns is commonly used to rename columns.
// For example, if you want to train towards ImageId, and your trainer
// expects a "Label" column, you can use CopyColumns to rename ImageId
// to Label. Technically, the ImageId column still exists, but it won't
// be materialized unless you actually need it somewhere (e.g. if you
// were to save the transformed data without explicitly dropping the
// column). This is a general property of IDataView's lazy evaluation.
var pipeline = mlContext.Transforms.CopyColumns("Label", "ImageId");
// Now we can transform the data and look at the output to confirm the
// behavior of CopyColumns. Don't forget that this operation doesn't
// actually evaluate data until we read the data below.
var transformedData = pipeline.Fit(dataview).Transform(dataview);
// We can extract the newly created column as an IEnumerable of
// SampleInfertDataTransformed, the class we define below.
var rowEnumerable = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, reuseRowObject: false);
// And finally, we can write out the rows of the dataset, looking at the
// columns of interest.
Console.WriteLine($"Label and ImageId columns obtained " +
$"post-transformation.");
foreach (var row in rowEnumerable)
Console.WriteLine($"Label: {row.Label} ImageId: {row.ImageId}");
// Expected output:
// ImageId and Label columns obtained post-transformation.
// Label: 1 ImageId: 1
// Label: 2 ImageId: 2
// Label: 3 ImageId: 3
// Label: 4 ImageId: 4
// Label: 5 ImageId: 5
// Label: 6 ImageId: 6
}
private class InputData
{
public int ImageId { get; set; }
public float[] Features { get; set; }
}
private class TransformedData : InputData
{
public int Label { get; set; }
}
}
}