Compartir a través de


MissingValueReplacingEstimator Clase

Definición

public sealed class MissingValueReplacingEstimator : Microsoft.ML.IEstimator<Microsoft.ML.Transforms.MissingValueReplacingTransformer>
type MissingValueReplacingEstimator = class
    interface IEstimator<MissingValueReplacingTransformer>
Public NotInheritable Class MissingValueReplacingEstimator
Implements IEstimator(Of MissingValueReplacingTransformer)
Herencia
MissingValueReplacingEstimator
Implementaciones

Comentarios

Características del estimador

¿Este estimador necesita examinar los datos para entrenar sus parámetros?
Tipo de datos de columna de entrada Vector o escalar de Single o Double
Tipo de datos de columna de salida Igual que el tipo de datos de la columna de entrada.
Exportable a ONNX

El resultado <xref:Microsoft.ML.Transforms.MissingValueReplacingTransformer"/> crea una nueva columna, denominada como se especifica en los parámetros de nombre de columna de salida, y copia los datos de la columna de entrada en esta nueva columna con la excepción de los valores que faltan en los datos se reemplazarían según la estrategia elegida.

Consulte la sección Consulte también los vínculos de ejemplos de uso.

Métodos

Fit(IDataView)

Entrena y devuelve un MissingValueReplacingTransformerobjeto .

GetOutputSchema(SchemaShape)

Devuelve el SchemaShape del esquema que generará el transformador. Se usa para la propagación y comprobación del esquema en una canalización.

Métodos de extensión

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Anexe un "punto de control de almacenamiento en caché" a la cadena del estimador. Esto garantizará que los estimadores de bajada se entrenarán con datos almacenados en caché. Resulta útil tener un punto de control de almacenamiento en caché antes de que los instructores tomen varios pases de datos.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dado un estimador, devuelva un objeto de ajuste que llamará a un delegado una vez Fit(IDataView) . A menudo, es importante que un estimador devuelva información sobre lo que cabe, por lo que el Fit(IDataView) método devuelve un objeto con tipo específico, en lugar de simplemente un general ITransformer. Sin embargo, al mismo tiempo, IEstimator<TTransformer> a menudo se forman en canalizaciones con muchos objetos, por lo que es posible que tengamos que crear una cadena de estimadores a través EstimatorChain<TLastTransformer> de donde el estimador para el que queremos obtener el transformador se enterró en algún lugar de esta cadena. En ese escenario, podemos a través de este método adjuntar un delegado al que se llamará una vez que se llame a fit.

Se aplica a

Consulte también