Compartir a través de


Thread.GetNamedDataSlot(String) Método

Definición

Busca una ranura de datos con nombre. Para mejorar el rendimiento, en su lugar use campos marcados con el atributo ThreadStaticAttribute.

public:
 static LocalDataStoreSlot ^ GetNamedDataSlot(System::String ^ name);
public static LocalDataStoreSlot GetNamedDataSlot (string name);
static member GetNamedDataSlot : string -> LocalDataStoreSlot
Public Shared Function GetNamedDataSlot (name As String) As LocalDataStoreSlot

Parámetros

name
String

Nombre de la ranura de datos local.

Devoluciones

LocalDataStoreSlot

Una LocalDataStoreSlot asignada para este subproceso.

Ejemplos

Esta sección contiene dos ejemplos de código. En el primer ejemplo se muestra cómo usar un campo marcado con el ThreadStaticAttribute atributo para contener información específica del subproceso. En el segundo ejemplo se muestra cómo usar una ranura de datos para hacer lo mismo.

Primer ejemplo

En el ejemplo siguiente se muestra cómo usar un campo marcado con ThreadStaticAttribute para contener información específica del subproceso. Esta técnica proporciona un mejor rendimiento que la técnica que se muestra en el segundo ejemplo.

using namespace System;
using namespace System::Threading;

ref class ThreadData
{
private:
   [ThreadStatic]
   static int threadSpecificData;

public:
   static void ThreadStaticDemo()
   {
      // Store the managed thread id for each thread in the static
      // variable.
      threadSpecificData = Thread::CurrentThread->ManagedThreadId;
      
      // Allow other threads time to execute the same code, to show
      // that the static data is unique to each thread.
      Thread::Sleep( 1000 );

      // Display the static data.
      Console::WriteLine( "Data for managed thread {0}: {1}", 
         Thread::CurrentThread->ManagedThreadId, threadSpecificData );
   }
};

int main()
{
   for ( int i = 0; i < 3; i++ )
   {
      Thread^ newThread = 
          gcnew Thread( gcnew ThreadStart( ThreadData::ThreadStaticDemo )); 
      newThread->Start();
   }
}

/* This code example produces output similar to the following:

Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
 */
using System;
using System.Threading;

class Test
{
    static void Main()
    {
        for(int i = 0; i < 3; i++)
        {
            Thread newThread = new Thread(ThreadData.ThreadStaticDemo);
            newThread.Start();
        }
    }
}

class ThreadData
{
    [ThreadStatic]
    static int threadSpecificData;

    public static void ThreadStaticDemo()
    {
        // Store the managed thread id for each thread in the static
        // variable.
        threadSpecificData = Thread.CurrentThread.ManagedThreadId;
      
        // Allow other threads time to execute the same code, to show
        // that the static data is unique to each thread.
        Thread.Sleep( 1000 );

        // Display the static data.
        Console.WriteLine( "Data for managed thread {0}: {1}", 
            Thread.CurrentThread.ManagedThreadId, threadSpecificData );
    }
}

/* This code example produces output similar to the following:

Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
 */
Imports System.Threading

Class Test

    <MTAThread> _
    Shared Sub Main()

        For i As Integer = 1 To 3
            Dim newThread As New Thread(AddressOf ThreadData.ThreadStaticDemo)
            newThread.Start()
        Next i

    End Sub

End Class

Class ThreadData

    <ThreadStatic> _
    Shared threadSpecificData As Integer

    Shared Sub ThreadStaticDemo()

        ' Store the managed thread id for each thread in the static
        ' variable.
        threadSpecificData = Thread.CurrentThread.ManagedThreadId
      
        ' Allow other threads time to execute the same code, to show
        ' that the static data is unique to each thread.
        Thread.Sleep( 1000 )

        ' Display the static data.
        Console.WriteLine( "Data for managed thread {0}: {1}", _
            Thread.CurrentThread.ManagedThreadId, threadSpecificData )

    End Sub

End Class

' This code example produces output similar to the following:
'
'Data for managed thread 4: 4
'Data for managed thread 5: 5
'Data for managed thread 3: 3

Segundo ejemplo

En el ejemplo siguiente se muestra cómo usar una ranura de datos con nombre para almacenar información específica del subproceso.

using namespace System;
using namespace System::Threading;

ref class Slot
{
private:
    static Random^ randomGenerator = gcnew Random();

public:
    static void SlotTest()
    {
        // Set random data in each thread's data slot.
        int slotData = randomGenerator->Next(1, 200);
        int threadId = Thread::CurrentThread->ManagedThreadId;

        Thread::SetData(
            Thread::GetNamedDataSlot("Random"),
            slotData);

        // Show what was saved in the thread's data slot.
        Console::WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData);

        // Allow other threads time to execute SetData to show
        // that a thread's data slot is unique to itself.
        Thread::Sleep(1000);

        int newSlotData =
            (int)Thread::GetData(Thread::GetNamedDataSlot("Random"));

        if (newSlotData == slotData)
        {
            Console::WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData);
        }
        else
        {
            Console::WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData);
        }
    }
};

ref class Test
{
public:
    static void Main()
    {
        array<Thread^>^ newThreads = gcnew array<Thread^>(4);
        int i;
        for (i = 0; i < newThreads->Length; i++)
        {
            newThreads[i] =
                gcnew Thread(gcnew ThreadStart(&Slot::SlotTest));
            newThreads[i]->Start();
        }
        Thread::Sleep(2000);
        for (i = 0; i < newThreads->Length; i++)
        {
            newThreads[i]->Join();
            Console::WriteLine("Thread_{0} finished.",
                newThreads[i]->ManagedThreadId);
        }
    }
};

int main()
{
    Test::Main();
}
using System;
using System.Threading;

class Test
{
    public static void Main()
    {
        Thread[] newThreads = new Thread[4];
        int i;
        for (i = 0; i < newThreads.Length; i++)
        {
            newThreads[i] =
                new Thread(new ThreadStart(Slot.SlotTest));
            newThreads[i].Start();
        }
        Thread.Sleep(2000);
        for (i = 0; i < newThreads.Length; i++)
        {
            newThreads[i].Join();
            Console.WriteLine("Thread_{0} finished.",
                newThreads[i].ManagedThreadId);
        }
    }
}

class Slot
{
    private static Random randomGenerator = new Random();

    public static void SlotTest()
    {
        // Set random data in each thread's data slot.
        int slotData = randomGenerator.Next(1, 200);
        int threadId = Thread.CurrentThread.ManagedThreadId;

        Thread.SetData(
            Thread.GetNamedDataSlot("Random"),
            slotData);

        // Show what was saved in the thread's data slot.
        Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData);

        // Allow other threads time to execute SetData to show
        // that a thread's data slot is unique to itself.
        Thread.Sleep(1000);

        int newSlotData =
            (int)Thread.GetData(Thread.GetNamedDataSlot("Random"));

        if (newSlotData == slotData)
        {
            Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData);
        }
        else
        {
            Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData);
        }
    }
}
Imports System.Threading

Class Test
    Public Shared Sub Main()
        Dim newThreads(3) As Thread
        Dim i As Integer
        For i = 0 To newThreads.Length - 1
            newThreads(i) = _
                New Thread(New ThreadStart(AddressOf Slot.SlotTest))
            newThreads(i).Start()
        Next i
        Thread.Sleep(2000)
        For i = 0 To newThreads.Length - 1
            newThreads(i).Join()
            Console.WriteLine("Thread_{0} finished.", _
                newThreads(i).ManagedThreadId)
        Next i
    End Sub
End Class

Class Slot
    Private Shared randomGenerator As New Random()

    Public Shared Sub SlotTest()
        ' Set random data in each thread's data slot.
        Dim slotData As Integer = randomGenerator.Next(1, 200)
        Dim threadId As Integer = Thread.CurrentThread.ManagedThreadId

        Thread.SetData(
            Thread.GetNamedDataSlot("Random"),
            slotData)

        ' Show what was saved in the thread's data slot.
        Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
            threadId, slotData)

        ' Allow other threads time to execute SetData to show
        ' that a thread's data slot is unique to itself.
        Thread.Sleep(1000)

        Dim newSlotData As Integer = _
            CType(Thread.GetData(Thread.GetNamedDataSlot("Random")), Integer)

        If newSlotData = slotData Then
            Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
                threadId, newSlotData)
        Else
            Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
                threadId, newSlotData)
        End If
    End Sub
End Class

Comentarios

Importante

.NET Framework proporciona dos mecanismos para usar el almacenamiento local de subprocesos (TLS): campos estáticos relativos a subprocesos (es decir, campos marcados con el atributo ) y ranuras ThreadStaticAttribute de datos. Los campos estáticos relativos a subprocesos proporcionan un rendimiento mucho mejor que las ranuras de datos y habilitan la comprobación de tipos en tiempo de compilación. Para obtener más información sobre el uso de TLS, vea Thread Local Storage: Thread-Relative Static Fields and Data Slots.

Los subprocesos usan un mecanismo de memoria de almacén local para almacenar datos específicos del subproceso. Common Language Runtime asigna una matriz de almacén de datos de varias ranuras a cada proceso cuando se crea. El subproceso puede asignar una ranura de datos en el almacén de datos, almacenar y recuperar un valor de datos en la ranura y liberar la ranura para su reutilización después de que expire el subproceso. Las ranuras de datos son únicas por subproceso. Ningún otro subproceso (ni siquiera un subproceso secundario) puede obtener los datos.

Si la ranura con nombre no existe, se asigna una nueva ranura. Las ranuras de datos con nombre son públicas y pueden ser manipuladas por cualquier persona.

Se aplica a

Consulte también